

APPENDIX A KLAMATH RIVER WATER QUALITY WORKSHOP NOTES

Klamath River Water Quality Workshop September 10-13, 2012 Sacramento, CA *Workshop Notes*

Table of Contents

INTRODUCTION	1
WORKSHOP AGENDA	2
ATTENDEES LIST WITH AFFILIATIONS	4
DAY 2 – SMALL GROUP EVALUATION SESSIONS: APPLICATION OF EVALUATION CRITERIA	11
Wetland Restoration/Treatment Wetlands/Diffuse Source Treatment Systems (WR/TR/DSTS)	11
Group 1 - WR / TR / DSTS	11
Group 2 - WR / TR / DSTS	17
Group 3 - WR / TR / DSTS	23
Group 4 - WR / TR / DSTS	28
Group 5 - WR / TR / DSTS	34
Algal Biomass Removal/Sediment Removal/Water Column Oxidation-Sediment Sequestration (AB	R/SR/WCO-
	40
Group 1 - ABR / SR / WCO-SS	
Group 2 - ABR / SR / WCO-SS	
Group 3 - ABR / SR / WCO-SS	
Group 4 - ABR / SR / WCO-SS	
Group 5 - ABR / SR / WCO-SS	
IMPROVEMENTS	ER QUALITY
Group 1	70
Group 2	
Group 3	
Group 4	
Group 5	
Group 6	
Group 7	83
Group 8	85
Group 9	
Group 10	
	92
DAY 3 – EXPERT PANEL DISCUSSION	94

Introduction

The Klamath River Water Quality Workshop, held in Sacramento, California, September 10-13, 2012, included over 100 attendees representing roughly 13 federal and state (California, Oregon) agencies, multiple tribes, and several consulting firms, academic institutions, and utilities. The purpose of the workshop was to identify technologies and strategies that will provide a clear working framework to reduce nutrient and organic matter loads to the Klamath River and improve water quality conditions within the Klamath Basin. The workshop focus was on the Upper Klamath Basin including Upper Klamath Lake and its primary tributaries (Wood, Williamson, and Sprague Rivers) and the Keno Impoundment.

The workshop was funded by the California Coastal Conservancy, PacifiCorp, and the California State Water Boards Training Academy.

On Day 1, the Project Contract Team and invited speakers from United States Geologic Survey (USGS) presented both in-basin and out-of-basin background information, much of which was also detailed in the Pre-Workshop Information Packet (Stillwater Sciences 2012). On Day 2, participants broke into small working groups to evaluate several potential project types for nutrient and water quality improvements and engage in a design charrette involving a 20-year time horizon and \$570 million of project implementation funding in the Klamath Basin. The results of this hypothetical exercise were presented at a working dinner on Day 2 to facilitate group information sharing. On Day 3, design charrette key themes were summarized and reviewed with the broader workshop group, followed by a four-member Expert Panel question and answer session on the key themes.

The following workshop notes provide documentation of the agenda, attendees, small group evaluation sessions, design charrettes, and expert panel discussion. A summary of the USGS technical presentations will be provided as an addendum to the workshop notes. Synthesis and application of the information contained within the workshop notes will be presented in the Final Workshop Report, which will also include a description of priority technological options that emerged from workshop discussions and potential benefits from sequencing or linking potential projects to improve Klamath Basin water quality.

Workshop Agenda

	Location	Moderator	Presenter(s)	Mins	Time		
Day 1 - September 11, 2012							
Welcome and Workshop Objectives	Byron Sher Hearing Room	Michael Bowen	Clayton Creager, Maia Singer	15	8:30 AM	-	8:45 AM
Setting the Stage							
Environmental Setting Overview	Byron Sher	Michael	Maia Singer, Eli Asarian, Jake Kann	60	8:45 AM	-	9:45 AM
Existing Example Large-Scale Projects	Hearing Room	Bowen	Maia Singer, Todd Osborne	45	9:45 AM	-	10:30 AM
Break - light refreshments provided				15	10:30 AM	-	10:45 AM
Expert Panel Presentations	Byron Sher	Michael	Tammy Wood, Stewart Rounds, Chauncey Anderson	60	10:45 AM	-	11:45 AM
Discussion of Restoration/ Rehabilitation Potential		bin Bowen	Maia Singer, Pat Higgins	30	11:45 AM	-	12:15 PM
Lunch on your own	75	12:15 PM	-	1:30 PM			
Project Evaluation Criteria	Byron Sher Hearing Room	Michael Bowen	Maia Singer	30	1:30 PM	-	2:00 PM
	Candidate Wa	ater Quality Pr	ojects				
Wetland Restoration	Duron Chor	Maia	Eli Asarian	-			
Treatment Wetlands	Hearing Room	Singer	Maia Singer	75	2:00 PM	-	3:15 PM
Decentralized (Diffuse) Source Treatment Systems	Theat mig noom	511861	Michael Ogden				
Break - light refreshments provided				30	3:15 PM	-	3:45 PM
Algae/Biomass Removal from the Water Column via Filtration			Todd Osborne				
Sediment Removal (Dredging)	Byron Sher Hearing Room	Maia Singer	Todd Osborne	75	3:45 PM	-	5:00 PM
Water Column Oxidation/ Sediment Sequestration (Phosphorus Inactivation)		Ŭ	Harry Gibbons				
Break - light refreshments provided				15	5:00 PM	-	5:15 PM
Open Session	Bryon Sher Hearing Room	Maia Singer	Interested Workshop Participants	45	5:15 PM	-	6:00 PM

Day 2 - September 12, 2012										
Brief Overview of Day 1	Byron Sher Hearing Room	Maia Singer	Maia Singer	15	8:30 AM	-	8:45 AM			
Small Group Evaluation Sessions										
Application of Evaluation Criteria - 3 project types	Conference Rooms	Small Group	Activity	90	8:45 AM	-	10:15 AM			
Break - light refreshments provided				15	10:15 AM	-	10:30 AM			
Application of Evaluation Criteria - 3 project types	Application of Evaluation Criteria - 3 project types Rooms Small Group Activity					-	12:00 PM			
Lunch on your own	75	12:00 PM	-	1:15 PM						
Small Group Reporting	Small Group Reporting Byron Sher Hearing Room Assigned by Small Groups				1:15 PM	-	2:15 PM			
Small Group Design Charrette - Linking Multiple Pro	ojects for Basin-Sca	le WQ Improv	ements							
Design Planning	Conference Rooms	Small Group	Activity	90	2:15 PM	-	3:45 PM			
Break - light refreshments provided				30	3:45 PM	-	4:15 PM			
Continued Design Planning and Prepare Reports	Conference Rooms	Small Group Activity		75	4:15 PM	-	5:30 PM			
Break				60	5:30 PM	-	6:30 PM			
Working Dinner - Hors d'oeuvres and main meal provided	rking Dinner - Hors d'oeuvres and main meal Citizen Hotel, vided Terrace Room.		Small Groups	120	6:30 PM	-	8:30 PM			
Small Group Design Charrette Reports	7th Floor	- ,	-							

	Location	Moderator	Presenter(s)		Time
Day 3 - September 13, 2012					
Summary of Small Group Report Consensus		Maia Singer	Maia Singer	60	9:00 AM - 10:00 AM
Expert Panel Discussion	Byron Sher Hearing Room	Maia Singer	John Day, Larry Dunsmoor, Stewart Rounds, Dave Ferguson	30	10:00 AM - 10:30 AM
Break - light refreshments provided				15	10:30 AM - 10:45 AM
Expert Panel Discussion (cont.)	Byron Sher Hearing Room	Maia Singer	John Day, Larry Dunsmoor, Stewart Rounds, Dave Ferguson	30	10:45 AM - 11:15 AM
Identify Next Steps for Project Development		Maia Singer	Group Discussion	45	11:15 AM - 12:00 PM

Klamath Water Quality Workshop – Participants									
Name	Technical Expertise	Organization	Address	Email					
Anderson, Chauncey	Steering Committee	USGS - OR Water Science Center	2130 SW 5th Avenue Portland, OR 97201	<u>chauncey@usgs.gov</u>					
Asarian, Eli	Project Contract Team	Riverbend Sciences	1614 West Ave Eureka, CA 95501	eli@riverbendsci.com					
Aue, Marianna	Attorney	SWRCB	State Water Resources Control Board 1001 Street Sacramento, CA 95814	<u>maue@waterboards.ca.go</u> ⊻					
Bach, Leslie	Director of Freshwater Programs	The Nature Conservancy in Oregon	821 SE 14th Ave Portland, OR 97214	<u>lbach@TNC.ORG</u>					
Bachand, Philip	Treatment Wetlands	Tetra Tech, Inc.	2023 Regis Drive, Davis CA 95616	Philip.Bachand@tetratech. com					
Bautista, Eduardo	Agricultural Engineering	Water Management and Conservation Research Unit USDA-ARS U.S. Arid-Land Agricultural Research Center	Arid-Land Agricultural Research Center 21881 North Cardon Lane Maricopa, AZ 85238	eduardo.bautista@ars.usd a.gov					
Bays, Jim	Treatment Wetlands	CH2MHill	4350 West Cypress Street Suite #600 Tampa, FL 33607-4178	Jim.bays@ch2m.com					
Belchik, Michael	Fisheries Restoration	Yurok Tribal Fisheries Program	23001 Hwy 96 Hoopa, CA 95546	<u>mbelchik@yuroktribe.nsn.</u> <u>Us</u>					
Bergamaschi, Brian		USGS	USGS California Water Science Center California State University Placer Hall MS 6129 6000 J Street Sacramento, CA 95819-6129	<u>bbergama@usgs.gov</u>					
Bond, Julia	Water Quality Trading Programs	The Freshwater Trust	65 SW Yamhill Suite 200; Portland OR, 9720	julia@thefreshwatertrust.o 					
Bowen, Michael	Steering Committee	CA State Coastal Conservancy		mbowen@scc.gov					
Bowman, Crystal	Steering Committee	Karuk Tribe		<u>cbowman@karuk.us</u>					
Buck, Denise	Interim Executive Director	Klamath Watershed Partnership	205 Riverside Drive, suite C Klamath Falls, OR 97601	<u>Dbuck@klamathpartnershi</u> <u>p.org</u>					
Campbell Miranda, Tara Jane	Environmental Science	USBR		tcampbellmiranda@usbr.g <u>ov</u>					
Carlson, Ken	Limnologist	CH2MHill	2020 S.W. Fourth Avenue 3rd Floor Portland. OR 97201	Ken.Carlson@CH2M.com					

Attendees List with Affiliations

Klamath Water Quality Workshop – Participants									
Name	Technical Expertise	Organization	Email						
Carlson, Rick	Steering Committee	USBR - Klamath Falls		<u>racarlson@usbr.gov</u>					
Carpenter, Jim	Ecosystem Design Consultant	Carpenter Design	658 Front Street Klamath Falls 97601	jim@carpenterdesign.com					
Carter, James L.		U.S. Geological Survey		jlcarter@usgs.gov					
Carter, Katharine		NCRWQCB		katherine.carter@waterbo ards.ca.gov					
Copithorn, Rhodes R.	Water Quality	GHD	16701 Melford Blvd., Suite 330, Bowie, Maryland 20715	rip.copithorn@ghd.com					
Crammond, Dar	Steering Committee	USGS - OR Water Science Center	2130 SW 5th Avenue Portland, OR 97201	<u>crammond@usgs.gov</u>					
Craydon, Emmalien	Project Contract Team	Stillwater Sciences	850 G Street, Suite K Arcata, CA 95521	Emmalien@stillwatersci.co <u>m</u>					
Creager, Clayton	Steering Committee	NCRWQCB	5550 Skylane Blvd., Suite A Santa Rosa, CA 95403	<u>ccreager@waterboards.ca.</u> <u>gov</u>					
Curry , Debra S		USGS	North California & Sierra Nevada Program California Water Science Center U.S. Geological Survey, WRD 6000 J St., Placer Hall Sacramento, CA 95819-6129	<u>dcurry@usgs.gov_</u>					
Day, John	Wetland Ecology	Louisiana State University	2237 Energy Coast & Environment Building LSU- Coastal Ecology Institute Baton Rouge, LA 70803	johnday@lsu.edu					
Davlin, Kenneth G.; P.E.	Senior Principal on the NASA algae bio-fuels project	Oscar Larson & Associates	317 Third Street, Second Floor Eureka, CA 95501	kdavlin@olarson.com					
Deas, Mike	Civil Engineer	Watercourse Engineering	Watercourse Engineering 424 2nd St Davis, CA 95616	Mike.Deas@watercoursein c.com					
Detenbeck, Naomi	Watershed Ecology/ Nutrients	USEPA - Atlantic Ecology Division	27 Tarzwell Drive Narragansett, RI 02882	<u>Detenbeck.naomi@epa.go</u> ⊻					
Domagalski, Joesph		USGS		joed@usgs.gov					
Dunsmoor, Larry	Steering Committee	Klamath Tribes		<u>lkdunsmoor@aol.com</u>					
Eilers, Joe	Limnology	Max Depth Aquatics	MaxDepth Aquatics, Inc. PO Box 6838 Bend, OR 97708	j.eilers@maxdepthaq.com					
Ferguson, David F.	District Conservationist	USDA NRCS	2316 South 6th Street Suite C Klamath Falls, OR 97601	<u>david.ferguson@or.usda.g</u> <u>ov</u>					

Klamath Water Quality Workshop – Participants									
Name	Address	Email							
Fetcho, Ken	Water Quality	Yurok Tribal Environmental Program	190 Klamath Blvd PO Box 1027 Klamath, CA 95548	kfetcho@yuroktribe.nsn.us					
Fischer, Kris	Aquatics Biologist	tist Tribes River Highway, Cr		kris.fischer@klamathtribes .com					
Forbes, Margaret; Ph.D., E.I.T., P.W.S.	Treatment Wetlands	KBA EnviroScience, Ltd.	KBA EnviroScience, Ltd. 101 E. Southwest Parkway Suite 114 Lewisville, TX 75067	mforbes04@gmail.com					
Fortescue, Forest	Geologist			leucomonzogabbro@gmail .com					
Frank, Paul	Treatment Wetlands	New Fields River Basin Services	1624 Franklin Street, Suite 901 Oakland, CA 94612	pfrank@newfields.com					
Freese, Matthew		SWRCB		Mfreese@waterboards.ca. gov_					
Garrison, Greg	Treatment Wetlands /Wastewater Treatment	GHD	1735 North First Street San Jose, CA 95112	Greg.Garrison@ghd.com					
Gearheart, Bob	Steering Committee	Humboldt State University		Robert.Gearheart@humbo ldy.edu					
Gibbons , Harry	Project Contract Team	Tetra Tech, Inc.	1420 Fifth Avenue, Suite 550 Seattle, WA 98101	Harry.Gibbons@tetratech. com					
Gorman, Kyle	Hydrologist	OR Water Resources Department	1128 NW Harriman St Bend, Oregon 97701	kyle.g.gorman@wrd.state. <u>or.us</u>					
Graf, Will; Ph.D.	Physical Geography/ Water Resources Management	University of South Carolina	College of Arts and Sciences Gambrell 251 Columbia, SC 29208	<u>graf@sc.edu</u>					
Haltiner, Jeff; Ph.D., P.E.	Hydrologist	ESA PWA	550 Kearny Street, 9th Floor San Francisco, CA 94108-2404	JHaltiner@esassoc.com					
Hamilton, Andy	Hydrologist	Bureau of Land Management	Bureau of Land Management Klamath Falls Resource Area 2795 Anderson Ave, Bld # 25	<u>a1hamilt@blm.gov</u>					
Hampton, Mark	Fish Biologist	NOAA Fisheries	NOAA Fisheries 1829 South Oregon Street Yreka, CA 96097	Mark.Hampton@noaa.gov					
Hayden, Natanya	Water Quality Specialist	OR TNC	Klamath Falls Field Office 226 Pine St. Klamath Falls, OR 97601	nhayden@tnc.org					
Hemstreet, Tim	Steering Committee	PacifiCorp	825 NE Multnomah, Suite 1500 Portland, OR 97232	Tim.Hemstreet@PacifiCorp .com					
Hey, Donald L.	Wetland Treatment	Wetlands Research, Inc.	Wetlands Research, Inc. 53 W. Jackson Blvd., #1015 Chicago, IL 60604	<u>dlhey@sbcglobal.net</u>					

Klamath Water Quality Workshop – Participants									
Name	Technical Expertise	Organization	Address	Email					
Hendrixson, Heather	Wetland Restoration	OR TNC	Klamath Falls, OR	<u>hhendrixson@tnc.org</u>					
Hewitt, Dave	Fisheries Biologist	USGS - Western Fisheries Research Center - Klamath Falls Field Station	2795 Anderson Ave., Suite 106 Klamath Falls, OR 97603	<u>dhewitt@usgs.gov</u>					
Higgins, Patrick	Fisheries Biologist	Fisheries Consultant	791 8th Street Arcata, CA 95521	phiggins@humboldt1.com					
Hirst, Peter	Soil Nutrient Management	New England Biochar and Sonoma Biochar Initiative	62 Southern Eagle Cart Way Brewster, MA 02631	PETER@NEWENGLANDBIO CHAR.ORG					
Holdren, Chris	Steering Committee	USBR - Denver		<u>GHoldren@usbr.gov</u>					
Holz, John; PhD	Nutrient Management	HAB Aquatic Solutions	3120 S. 72nd Street Suite 157 Lincoln, NE 68506	jholz@habaquatics.com					
Johnson, Alex	Water Quality Trading Programs	The Freshwater Trust	65 SW Yamhill Suite 200; Portland OR, 9720	alex@thefreshwatertrust.o rg					
Jones, Valerie	Project Contract Team	Jones & Trimiew Design	2328 6th Street Apt. 4 Santa Monica, CA 90405	benevale@yahoo.com					
Jordahl, Jim	Treatment Wetlands	CH2MHill	4200 University Avenue Suite #309 West Des Moines, IA 50266	Jim.jordahl@ch2m.com					
Kann, Jacob	Project Contract Team	Aquatic Ecosystem Sciences, LLC	295 East Main St., Suite 7 Ashland, OR 97520	<u>Jacobkann@aol.com</u>					
Karas, Christine		USBR		<u>ckaras@usbr.gov</u>					
Ketley, Robert	Nutrient Control Strategies	City of Watsonville		<u>robert.ketley@cityofwatso</u> <u>nville.org</u>					
Keydel, Sue	Steering Committee	USEPA Region IX	US EPA Region IX 75 Hawthorne Street - WTR-3 San Francisco, CA 94105	keydel.Susan@epa.gov					
Kirk, Steve	Steering Committee	ODEQ		kirk.steve@deq.state.or.us					
Krider - Royer, Chantell	Monitoring Plan Coordinator	Klamath Basin Monitoring Program	KBMP c/o Biology Dept. Sci. B Humboldt State University 1 Harpst Street Arcata. CA 95521	<u>mpc@kbmp.net</u>					
Kreissl, James	WQ Engineer	Tetra Tech, Inc.	737 Meadowview Dr. Villa Hills, KY 41017	jkreissl1@insightbb.com					
Kunz, Nick	Environmental Scientist	SWRCB	State Water Resources Control Board 1001 I Street Sacramento, CA 95814	nkunz@waterboards.ca.go ⊻					

Klamath Water Quality Workshop – Participants								
Name	Technical Expertise	Organization	Address	Email				
Kuszmar, David	Environmental Engineer	NCRWQCB	5550 Skylane Blvd., Suite A Santa Rosa, CA 95403	<u>Dkuszmar@waterboards.c</u> <u>a.gov</u>				
Kuwabara, James S	Benthic Fluxes of Trace Metals and Nutrients	U.S. Geological Survey	Bldg. 15, McKelvey Building, 345 Middlefield Road, Mail Stop 466 Menlo Park, CA 94025-3561	<u>kuwabara@usgs.gov</u>				
Lambert, Chrysten		Klamath Basin Rangeland Trust	295 E. Main St., Ste 3 Ashland, OR 97520	<u>clambert@kbrt.org</u>				
Leland, David	Chief Watershed Protection Division	NCRWQCB	5550 Skylane Blvd., Suite A Santa Rosa, CA 95403	<u>dleland@waterboards.ca.g</u> <u>ov</u>				
Lev, Esther	Wetland Restoration	OR Wetland Conservancy	5485 Southwest Nyberg Lane Tualatin, OR 97062	estherlev@wetlandsconser vancy.org				
Lobo, Michelle	Environmental Scientist	CA SWRCB	State Water Resources Control Board 1001 I Street Sacramento, CA 95814	<u>mlobo@waterboards.ca.go</u> ⊻				
Louis, Gail	Steering Committee	USEPA Region IX	US EPA Region IX 75 Hawthorne Street - WTR-3 San Francisco, CA 94105	louis.Gail@epa.gov				
Lynch, Dennis	Lynch, Dennis Limnologist		2130 SW 5th Avenue Portland, OR 97201	<u>ddlynch@usgs.gov</u>				
Mauser, Dave	Wildlife Biologist	USFWS	4009 Hill Road Tulelake, CA 96134	Dave_mauser@fws.gov				
Mayer, Tim	Hydrologist	USFWS Pacific Region - Water Resources Branch - division of Engineering	911 N.E. 11th Avenue Portland, Oregon 97232-4181	<u>tim_mayer@fws.gov</u>				
McFadin, Bryan	Engineer	NCRWQCB	5550 Skylane Blvd,. Suite A Santa Rosa, CA 95403	<u>bmcfadin@waterboards.ca</u> . <u>gov</u>				
McNabb, Terry	Nutrient Management	Aquatechnex Inc.		<u>tmcnabb@aquatechnex.co</u> <u>m</u>				
Measeles, Paul	Hydrologist	OR Dept. of Agriculture	Natural Resources Division 635 Capitol St NE # 313 Salem, OR 97301	<u>Pmeaseles@oda.state.or.u</u> <u>S</u>				
Milligan, Brett	Landscape architecture / Environmental Restoration	University of CA Davis	2134 SE Yamhill St. Portland, OR 97214	<u>brett</u> milligan@yahoo.com				
Mullis, Curt	Board member	Klamath Water Users Association	735 Commercial Street Klamath Falls, OR 97601	<u>ctm8605@aol.com</u>				
Myrick, Christopher, Ph.D.	Fish Biologist / Ecologist	Colorado State University	Department of Fish, Wildlife, and Conservation Biology Warner College of Natural Resources Campus Delivery Colorado State University	<u>Chris.Myrick@colostate.ed</u> <u>u</u>				

Klamath Water Quality Workshop – Participants									
Name	Technical Expertise	Organization	Address	Email					
			Fort Collins, CO 80523-1474						
Nomura, Ranei	Water Quality Trading Programs	ODEQ	1102 Lincoln St., Suite 210. Eugene, OR 97401	NOMURA.Ranei@deq.stat e.or.us					
Ogden, Michael	Project Contract Team	NSI/Biosystems	NSI/Biosystems 1567 Cunningham Rd Sebastopol, CA 95472	Michael@Natsys-inc.com					
Olson, Samantha	Attorney	NCRWQCB - staff attorney		<u>soloson@waterboards.ca.g</u> <u>ov</u>					
Osborne, Todd	Project Contract Team	University of FL	Soil & Water Science Department University of Florida 106 Newell Hall Gainesville, FL 32611	<u>osbornet@ufl.edu</u>					
Otten, Heidi	Env. Scientist Intern	NCRWQCB	5550 Skylane Blvd., Suite A Santa Rosa, CA 95403	<u>Heidi.Otten@waterboards.</u> <u>ca.gocv</u>					
Pawson, Mary Grace, Environmental PE Engineer		GHD	2235 Mercury Way Suite 150, Santa Rosa, CA 95407-5472	<u>marygrace.pawson@ghd.c</u> <u>om</u>					
Pellerin, Brian		USGS		<u>bpeller@usgs.gov</u>					
Pietrzak, Beth	Regional Water Quality Specialist	Oregon Dept of Agriculture	569 Hanley Road Central Point, OR 97502	epietrzak@oda.state.or.us					
Pisano, Mark	Fisheries Program Manager R1 Fisheries, Klamath Restoration	CA F&G	1625 South Main St Yreka, CA 96097	MPISANO@dfg.ca.gov					
Powers, Mike	Planning and Compliance Leader	Oregon Dept of Agriculture	Natural Resources Division 635 Capitol Street NE Salem, OR 97301-2532	mpowers@oda.state.or.us					
Prendergast, Linda	Steering Committee	PacifiCorp		Linda.Prendergast@Pacific orp.com					
Ragazzi, Erin	Water Quality Certification & Public Trust	CA SWRCB	State Water Resources Control Board 1001 I Street Sacramento, CA 95814	Ragazzi.Erin@Waterboards .ca.gov					
Redwine, Jed	Treatment Wetlands	National Park Service's Inventory and Monitoring Network	Natural Resource Condition Assessment Ecologist South Florida/Caribbean Network 18001 Old Cutler Road Suite 419Miami, FL 33157	jed_redwine@nps.gov					
Reuter, John	Limnologist - algal ecology, nutrient cycling, cyanobacteria	Portland State University	PO Box 751 Portland, Oregon 97207-0751	<u>rueterj@pdx.edu</u>					
Rinderneck, Janna	Environmental Scientist	CA Dept. of Fish & Game		jrinder@ospr.dfg.ca.gov					
Rounds, Stewart; Ph.D.	Hydrologist	USGS	2130 SW 5th Avenue Portland, OR 97201	sarounds@usgs.gov					

Klamath Water Quality Workshop – Participants									
Name	Technical Expertise	Organization	Address	Email					
Sanneman, Carrie	WQ Trading Programs	Willamette Partnership	2550 SW Hillsboro Highway Hillsboro, OR 97123	SannemanC@willamettepa rtnership.org					
Simon, Nancy	Research Chemist - Sediment	USGS	12201 Sunrise Valley Drive, Mail Stop 432 Reston, VA 20192-0002	nssimon@usgs.gov					
Singer, Maia	Project Contract Team	Stillwater Sciences	2855 Telegraph Avenue, Suite 400 Berkeley, CA 94705	maia@stillwatersci.com					
St. John, Matt	Executive Officer	NCRWQCB	5550 Skylane Blvd., Suite A Santa Rosa, CA 95403	<u>mstjohn@waterboards.ca.</u> <u>gov</u>					
Trgovcich, Caren	Chief Deputy Director	CA SWRCB	State Water Resources Control Board 1001 I Street Sacramento, CA 95814	ctrgovcich@waterboards.c a.gov					
Trimiew, Kim	Project Contract Team	Jones & Trimiew Design	2328 6th Street Apt. 4 Santa Monica, CA 90405	trimiew@dslextreme.com					
Tucker, Craig		Karuk Tribe		<u>ctucker@karuk.us</u>					
Vasquez, Elizabeth		USBR		<u>EVasquez@usbr.gov</u>					
Watts, Jennifer	Environmental Scientist	SWRCB	State Water Resources Control Board 1001 I Street Sacramento, CA 95814	jwatts@waterboards.ca.go ⊻					
Welch, Eugene	Limnology	Tetra Tech, Inc.	4228 201 Avenue NE Sammamish, WA 98074	<u>Gene.Welch@tetratech.co</u> <u>m</u>					
Weston, Johanna	Ecologist	SWRCB		<u>JWeston@waterboards.ca.</u> <u>gov</u>					
Wise, Ted	Hydrologist	OR Department of Fish & Wildlife		ted.g.wise@state.or.us					
Wood, Tammy	WQ Modeling	USGS	2130 SW 5th Avenue Portland, OR 97201	tmwood@usgs.gov					
Woodley, T.J.	District Conservationist	Klamath Soil and Water Conservation District	409 Pine Street, Suite 311 Klamath Falls, OR 97601	tj.woodley@oacd.org					

Day 2 – Small Group Evaluation Sessions: Application of Evaluation Criteria

Wetland Restoration/Treatment Wetlands/Diffuse Source Treatment Systems (WR/TR/DSTS)

Group 1 - WR / TR / DSTS

Teo	hnc	ology/N	Neasure: WETLAND RESTORATIO	N								
								Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis.
Criterion - Use Quantitatve or H/M/L Rankings				U	IKL Trib	butaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab	
1.6	ffee	tivene	55									
a.	Tot	al TN re	emoved for project life (MT)					H (> 100 MT)	H (> 100 MT)		No	Obj 1 - Nutrients
b.	Tot	al TP re	emoved for project life (MT)					H (> 10 MT)	H (> 10 MT)		No	Obj 1 - Nutrients
c.	Sea	sonal [00 improvements - indirect or d	lirect?		L-Ind	direct	H-Direct	H-Direct	L-Indirect	No	Obj 2 - Water Quality
d.	Sea	isonal p	oH improvements - indirect or d	irect?		L-Ind	direct	H-Direct	H-Direct	L-Indirect	No	Obj 2 - Water Quality
e.	Sea	isonal 1	rss/turbidity improvements - in	direct or direct	?	L	L-	M-Direct	M-Direct	L-	No	Obj 2 - Water Quality
) f .	Sea	isonal (Chl-a/algal toxin improvements	- indirect or di	rect?	Ŀ	-	H-Direct	H-Direct	L-	No	Obj 2 - Water Quality
2.0	Cost	(estim	ated)									
. a.	Tot	al cost	for project life					VH (>\$100M)	VH (>\$100M)		No	Obj 1 - Nutrients
b.	Cos	t per u	nit N removal (\$/kg)					H (>\$15/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients
c.	Cos	t per u	nit P removal (\$/kg)				м	(\$10 to \$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients
3. E	ingi	neerin	g challenges		L		L		L	L	No	Narrative Questions
i 4. I	nfra	structu	ire challenges		L		L		L	L	No	Narrative Questions
5.1	mpl	ement	ation timeframe		N	1	М		Μ	Μ	No	Narrative Questions
6. E	ner	gy Use			L		L		L	L	No	Narrative Questions
7.0	02	Loadin	g		N	1	М		Μ	М	Yes	Narrative Questions
8.0	Com	patabil	ity/synergy									
. <mark>a.</mark>	Wit	h othe	r large-scale technologies consi	dered	н		н		н	н	No	Narrative Questions
. <mark>c.</mark>	Wit	h ongo	ing or anticipated restoration m	neasures	Н		Н		н	Н	No	Narrative Questions
9. F	₹isk	of failu	ire?		L		L		L	L	No	Narrative Questions
10.	Nee	ed for f	urther scientific study?		L		L		L	L	No	Narrative Questions
sup thr	opor	t for in h incre	creased sucker recruitment in U ased consumptive use. ET losse	pper Klamath l ipper klamath l	ake). This tech ds may be sma	inology iller tha	y may resul an ET losse	t in some ET loss s from the grazed	from wetlands, whi l pasture or hayfield	ch could negative Is they replace.	ly impact surface	water availability
Obj	ectiv	/e 1: Re	educe seasonal concentrations of	nutrients								
Tec	hnol	ogy/M	easure: WETLAND RESTORATION					_				
Crit	erio	n - Use	Quantitative Rankings	UKL Tributaries (Wood, Sprague, Williamson)	Upper Klamath Lake	Link R	River Dam to eno Dam	JC Boyle Dam to Iron Gate Dam	Lost river (existing wetland)	Line of Reasonin	g/Notes	
	ſ			1000 (2 acros						calc area for the	three UKL tribs (2	acres per mile), straights
ļ		Wetlan	d area (acres)	per mile)	10000	b	1000	0 260		feed	s a wettand (wild)	renerage, and is gravity
	•	Project	life (yrs)	100	100)	10	0 100				
		apita osts	Per unit area (\$/acre) ^a	2000	\$ 4,700		\$4,70	0 2000		number for river	ine system	
		ö	Sub-total capital costs		\$ 47,000,000	\$	47,000,000		<u> </u>			
6		0.0sts	Annual (\$/yr)		\$ 1,000,000	\$	1,000,000		\$ -	,		
		00	Sub-total O&M (\$)		\$ 100,000,000	\$	100,000,000	1	\$ -			
-	_	Total co	ost for project life		\$ 147,000,000	\$	147,000,000		\$ -			al rate (first order)
		P remo	val rate (g P/m2/yr)		0.2		0.	5	0.	5 p removal driver	n by plant cover	arrate (hist order)
		P "avoio	ded" loading rate (g P/m2/yr) ^c		1.62	2				better definition	n and condition fo	r p avoided
- 2	;	Annual	TN load removed (MT/yr)		74	1	73	9		0		
	ĺ	Fotal T	I removed for project life (MT)		7,386	1	36,929	1	-			
t Rer	ļ	Total TF	removed for project life (MT)		6,556		1,012		-			
1		IN unit IP unit	removal cost (\$/kg) removal cost (\$/kg)		\$ 20 \$ 22	\$	4		#DIV/0! #DIV/0!			
-				1				-1				

^aIncludes land acquisition and construction. Low end of per-acre land costs assumed to be \$3,000 (i.e., mid-way between \$700-750 cost for 1990s Wood River land acquisitions and the \$5,000 current small-parcel estimate from Deas (2011). Lower estimate construction costs assumed to be \$1,700/acre based on 2000-2010 construction costs for entire Williamson River Delta project (i.e., \$10M/5,800 wetland acres = \$1,700/acre) http://www.fws.gov/klamathfallsfwo/suckers/sucker_pub/oct08posters/RestoringWetlands-SternHendrickson.pdf. Higher estimate construction costs assumed to be \$5,600/acre from Mahugh et al. (2009). ^BO&M costs very low but unknown (no pumping/energy but: security, fencing, monitoring, etc.).

^c Re-flooding north/west side of the Williamson River Delta (Tulana Farms) initially released 2 MT of phosphorus (Wong et al. 2011), whereas previous annual P export to lake was 21-25 MT (Synder and Morace 1997), indicating 21 MT reduced loading to the lake in the first year (and release of P should be lower than 2 MT in subsequent years). 21 MT/yr/3,200 acres=1.8 g P/m2/yr.

Comments: assume dams are removed,

Objecti	Objective 2: Improve overall water quality - please make entries in green shaded cells only.											
Technology/Measure: WETLAND RESTORATION												
Criterio	n - Use Qualitative or H/M/L Rankings	UKL Tributaries	Upper Klamath Lake	Link River Dam to Keno Dam	JC Boyle Dam to Iron Gate Dam		Line of Reasoning/Notes					
	Overall DO improvements	L	н	Н	L							
ger	Direct or indirect effects?	Indirect	Direct	Direct	Indirect							
Š įs	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall							
□ ⁻	Other											
	Overall pH improvements	L	Н	Н	L							
H	Direct or indirect effects?	Indirect	Direct	Direct	Indirect							
	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall							
	Other											
5	Overall water temperature improvements	L	Н	Н	L							
erat	Direct or indirect effects?		Direct	Direct								
d l	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall							
Ē	Other		refugia (localized)									
ğ	Overall TSS/turbidity improvements	L	М	М	L							
다. 주고	Direct or indirect effects?		Direct	Direct								
1 T T	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall							
12	Other											
<u>_</u>	Overall chl-a/algal toxin improvements	L	н	Н	L							
hqo Iga	Direct or indirect effects?		Direct	Direct								
lorc 1 a / a	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall							
ਨ [°]	Other											
Comme	nts: asumption scale changes sufficent to pu	ush eco system ov	er tipping point (ba	sed on a mass balar	ice approach), legad	y issues add	ressed, the effectiveness of efforts in					

Comments: asumption scale changes sufficent to push eco system over tipping point (based on a mass balance approach), legacy issues addressed, the effectiveness of efforts in Link River depend on remediation of UKL problems, potential beaver role,

Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		•
Are the engineering and design requirements for this techology high, medium, or low and		
why?	L	
Are the infrastructure requirements for this technology high, medium, or low and why?		
	L	
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	L	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		greenhouse gas
technology/measure?)	м	
Is the 'fit' of this technology with other large-scale technologies being considered high,		
medium, or low? Is there a hybrid of several options that makes sense?	н	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		
medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money		
is spent for implementation, does failure mean zero WQ improvements are realized, or		
just somewhat less than anticipated)?	L	
Is the need for further scientific study of this technology prior to implementation in the		
Klamath Basin high, medium, or low and why?	L	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		don't know
consumptive use?	L	
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?	н	
Does this technology/measure provide an acceptable cost to benefit ratio?	м	depending on coorperation
Is this technology/measure a long-term solution or improvement?	н	
Are there readily identifiable legal constraints on this technology/measure?	L	
Are there readily identifiable political ramifications for this technology/measure?	н	
Are there likely to be unique opportunities for funding for this technology/measure?	M	
Will this approach create jobs? Of what sort?	L	
Are there identifiable social or cultural impacts from this technology/measure?	н	
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?	н	
What is the potential for unintended consequences for this technology/measure?	L	

Summary Criteria - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS									
		Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis,			
Criterion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab			
1. Effectiveness									
a. Total TN removed for project life (MT)			H (>100 MT)		No	Obj 1 - Nutrients			
b. Total TP removed for project life (MT)			H (> 10 MT)		No	Obj 1 - Nutrients			
c. Seasonal DO improvements - indirect or direct?					No	Obj 2 - Water Quality			
d. Seasonal pH improvements - indirect or direct?					No	Obj 2 - Water Quality			
e. Seasonal TSS/turbidity improvements - indirect or direct?					No	Obj 2 - Water Quality			
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?					No	Obj 2 - Water Quality			
2. Cost (estimated)		_							
a. Total cost for project life			H (\$1M to \$100M)		No	Obj 1 - Nutrients			
b. Cost per unit N removal (\$/kg)			L (< \$10/kg)		Yes	Obj 1 - Nutrients			
c. Cost per unit P removal (\$/kg)			M (\$10 to \$100/kg)		Yes	Obj 1 - Nutrients			
3. Engineering challenges	н	н	н	н	Yes	Narrative Questions			
4. Infrastructure challenges	н	н	н	н	Yes	Narrative Questions			
5. Implementation timeframe	М	М	М	М	No	Narrative Questions			
6. Energy Use	М	М	М	М	Yes	Narrative Questions			
7. CO2 Loading					Yes	Narrative Questions			
8. Compatability/synergy									
a. With other large-scale technologies considered	н	н	н	н	No	Narrative Questions			
c. With ongoing or anticipated restoration measures	н	н	н	н	No	Narrative Questions			
9. Risk of failure?	Μ	М	м	Μ	Yes	Narrative Questions			
10. Need for further scientific study?	L	L	L	L	No	Narrative Questions			
Comments: It is assumed that improvements to water quality in the Klar	math Basin will in	nprove support o	of beneficial uses (C	bjective 3), includ	ing support of a	quatic habitat (e.g.,			

support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS

			Upper Klamath	Link River Dam to	JC Boyle Dam to	Lost River Basin	
Criterion - Use Quantitative Rankings		UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	(straights drain)	Line of Reasoning/Notes
Wet	tland area (acres)			1600	0		
e Proje	ject life (yrs)		50	50		50	
ital n	문 Per unit area (\$/acre) *		\$10,488	\$10,488			\$5-50k
Carl B	Sub-total capital costs		s -	\$ 16,780,800		s -	
	Per unit area (\$/acre/yr) b		\$ 259	\$ 260		\$ 260	gravity feed vs pumping vary costs
80	Annual (\$/yr)		\$ -	\$ 416,000.00		s -	
	Sub-total O&M (\$)		\$	\$ 20,800,000		s -	
Tota	al cost for project life		s -	\$ 37,580,800		\$ -	
Aver	rage flow (cfs)		70	70		70	
Days	s operating per year		365	365		365	
📮 Mea	an inflow TN concentration (mg/L)		1.35	1.35		1.35	Mass loading 50 - 150 mg/m2/day
o Mea	an outflow TN concentration (mg/L)		0.14	0.14		0.14	Calcs needed
📙 Mea	an inflow TP concentration (mg/L)		0.41	0.41		0.41	Mass loading 1 - 1.5 g/m2/year
- Mea	Mean outflow TP concentration (mg/L) 0.1			0.16		0.16	Calcs needed
S Ann	nual TN load removed (MT/yr)		76	76		76	this equation needs HRT, or calc out flow concentration
S Ann	nual TP load removed (MT/yr)		16	16		16	
. Tota	al TN removed for project life (MT)		3800	3800		3800	
5 Tota	al TP removed for project life (MT)		800	800		800	
TN u	unit removal cost (\$/kg)		\$ -	\$ 10		s -	N-removal can be estimated using either 1st or zero order empirical models
TP u	unit removal cost (\$/kg)		s -	\$ 47		s -	P-removal can be estimated using either 1st or zero order empirical models
N re	emoval rate (mg N/m2/d)		100	100		100	
5 Prer	emoval rate (g P/m2/yr)		1.25	1.25		1.25	
Ann	nual TN load removed (MT/yr)		0	236		0	
Ann	nual TP load removed (MT/yr)		0	8		0	
8 Tota	Total TN removed for project life (MT)			11,817		-	
🚦 Tota	Total TP removed for project life (MT)		-	405		-	
. TN u	unit removal cost (\$/kg)		#DIV/0!	\$ 3		#DIV/0!	N-removal can be estimated using either 1st or zero order empirical models
5 TP u	unit removal cost (\$/kg)		#DIV/0!	\$ 93		#DIV/0!	P-removal can be estimated using either 1st or zero order empirical models

^aIncludes land acquisition and construction^{*} Per-acre capital costs based upon scale-dependent regression equation (Kadlec and Wallace 2009). ^aO&M costs of \$260/acre/yr are the average value from SFWMD [2004]. O&M costs of \$800/acre/yr are median value from Kadlec and Wallace (2009). **Comments:** design to handle real time conditions, optimize for either P or N, removal rate calcs need to be revisited, refer to restore/constructed wetland for straights drain (o/m costs higher), must consider whose water It is (Rufuges may have senior rights), staging constructive wetland around UKL and transition into fully restored wetland (contiguous),

Please make entries in green shaded cells only.									
Technology/Measure: TREATMENT WETLANDS									
Narrative Question	H/M/L	Narrative Response							
Considerations for Summary Criteria									
Are the engineering and design requirements for this techology high, medium, or low		low compared to other tech (dredging)							
and why?	н								
Are the infrastructure requirements for this technology high, medium, or low and why?		site specific designs required, low compared to other tech (dredging)							
	н								
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-									
10 yrs), or low (< 2 yrs) and why?	м								
Is the energy use of this technology high, medium, or low and why?	м	depends on pumping costs, compared to what?							
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		needs study							
technology/measure?)									
Is the 'fit' of this technology with other large-scale technologies being considered high,									
medium, or low? Is there a hybrid of several options that makes sense?	н								
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,									
. medium, or low?	н								
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		invasive weeds							
money is spent for implementation, does failure mean zero WQ improvements are									
realized, or just somewhat less than anticipated)?	м								
Is the need for further scientific study of this technology prior to implementation in the									
Klamath Basin high, medium, or low and why?	L								
Additional Considerations									
Does this technology require that a water right be obtained for consumptive or non-									
consumptive use?	н								
Does this technology/measure address multiple water quality problems? Is it a more or									
i less of a global solution?	н								
Does this technology/measure provide an acceptable cost to benefit ratio?	м	don't like							
Is this technology/measure a long-term solution or improvement?	н								
Are there readily identifiable legal constraints on this technology/measure?	м	water rights, ESA, NEPA							
Are there readily identifiable political ramifications for this technology/measure?	н								
. Are there likely to be unique opportunities for funding for this technology/measure?	н								
Will this approach create jobs? Of what sort?	м								
Are there identifiable social or cultural impacts from this technology/measure?	н								
How will this technology interact with dam removal, should there be an affirmative									
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate									
Dams?	н								
What is the potential for unintended consequences for this technology/measure?		see restoration							
what is the potential for unintended benefits?	н								

Summary Criteria - please make entries in green shaded cells only.

Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS

_											
Cri	terion - Use a Combination of Quantitatve and H/M/L Rankings	UKL Tributaries	UKL Tributaries	Other Potential		For analysis, go to					
an	d Narrative Descriptions	(per unit)	(per 50 units)	Location	Comments?	tab					
1.	Effectiveness										
a.	Total TN removed for project life (MT)	L (< 10 MT)	M (10 to 100 MT)		No	Obj 1 - Nutrients					
b.	Total TP removed for project life (MT)	L (< 1 MT)	M (<1 to 10 MT)		No	Obj 1 - Nutrients					
с.	Seasonal DO improvements - indirect or direct?	HDirect	HDirect	H-Direct	No	Obj 2 - Water Quality					
d.	Seasonal pH improvements - indirect or direct?	HDirect	HDirect	H-Direct	No	Obj 2 - Water Quality					
e.	Seasonal TSS/turbidity improvements - indirect or direct?	HDirect	HDirect	H-Direct	No	Obj 2 - Water Quality					
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	HDirect	HDirect	H-Direct	No	Obj 2 - Water Quality					
2. (Cost (estimated)										
a.	Total cost for project life	L (< \$250K)	M (\$250K to \$1M)		No	Obj 1 - Nutrients					
b.	Cost per unit N removal (\$/kg)	M (\$10 to \$15/kg	M (\$10 to \$15/kg)		No	Obj 1 - Nutrients					
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients					
3. 1	Engineering challenges	L	L	L	No	Narrative Questions					
4.1	nfrastructure challenges	L	L	L	No	Narrative Questions					
5.1	mplementation timeframe	L	L	L	No	Narrative Questions					
6. I	Energy Use	L	L	L	No	Narrative Questions					
7. (CO2 Loading				Yes	Narrative Questions					
8. (Compatability/synergy										
a.	With other large-scale technologies considered	н	н	н	No	Narrative Questions					
b.	With ongoing or anticipated restoration measures	н	н	н	No	Narrative Questions					
9.1	Risk of failure?	L	L	L	No	Narrative Questions					
10.	Need for further scientific study?	L	L	L	Yes	Narrative Questions					
Со	Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support										

of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. However, since these are small systems, it is not expected that the overall losses will be large. Additionally, at this scale, ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Tec	chnology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS												
		UKL Tributaries			UKL Tributaries	Other Potential							
Crit	eria - De	velopment of Cost Estimates	(per unit)			(per 50 units)	Location	Line of Reasoning/Notes					
	Wetland area (acres)		1			50							
	Project	life (yrs)		10		10		highly variable					
		Site survey	\$	1,500	\$	75,000		Could be Zero, Highly Variable					
_		Diversion box	\$	2,500	\$	125,000		Could be Zero, Highly Variable					
nfo	sts	Level control	\$	3,000	\$	150,000		Could be Zero, Highly Variable					
l Costing I	Capital co	Pumps	\$	-	\$	-		Could be Zero, Highly Variable					
		Earthwork	\$	750	\$	37,500		Could be Zero, Highly Variable					
		Planting	\$	3,000	\$	150,000		Could be Zero, Highly Variable					
lera		Exclusion fencing @ \$3 per foot	\$	2,505	\$	125,226.20		Could be Zero, Highly Variable					
Ger		Sub-total capital costs	\$	13,255	\$	662,726	\$-	Could be Zero, Highly Variable					
	5 9	Per unit area (\$/acre/yr)	\$	260	\$	13,000							
	ost ost	Annual (\$/yr)	\$	260	\$	13,000							
	00	Sub-total O&M (\$)	\$	2,600	\$	130,000	\$-						
	Total co	st for project life	\$	15,855	\$	792,726	\$-						
_	N remo	val rate (mg N/m2/d)		100		100	100	Particulate removal (grazing), Tailwater					
Na	P remov	/al rate (g P/m2/yr)		1		1	1	Particulate removal (grazing), Tailwater					
Ĕ	Total TN	I removed for project life (MT)		1		74	-						
E B	Total TP	removed for project life (MT)		0.0		2.0	-						
n	TN unit	removal cost (\$/kg)	\$	11	\$	11	#DIV/0!						
TP unit removal cost (\$/kg)			\$	392	\$	392	#DIV/0!						

Comments: The cost estimates in column D are for a single 1-acre system. This technology has broader effects when many diffuse source wetlands are implemented in a single watershed, so cost estimates are provided for a larger number of systems are given in column E. highly variable inputs, spatial and temperal variability, target 1 - 2% of irrigated lands,

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS

Criteria	- Use H/M/L Rankings and Narrative	UKL Tributaries	UKL Tributaries	Other Potential	
Descrip	tions	(per unit)	(per 100 units)	Location	Line of Reasoning/Notes
	Overall DO improvements	н	н	н	
gen	Direct or indirect effects?	Direct	Direct	Direct	
Oxy Oxy	Season of greatest improvement	Late Winter - Fall	Late Winter - Fall	Late Winter - Fall	
	Other				
	Overall pH improvements	н	н	н	
т	Direct or indirect effects?	Direct	Direct	Direct	
<u>a</u>	Season of greatest improvement	Late Winter - Fall	Late Winter - Fall	Late Winter - Fall	
	Other				
e	Overall water temperature improvements	n/a	n/a	n/a	study needed, groundwater connectivity?,
eratu	Direct or indirect effects?	Direct	Direct	Direct	
du	Season of greatest improvement	Late Winter - Fall	Late Winter - Fall	Late Winter - Fall	
- He	Other				
lţ	Overall TSS/turbidity improvements	н	н	н	
Irbid	Direct or indirect effects?	Direct	Direct	Direct	
JT/S	Season of greatest improvement	Late Winter - Fall	Late Winter - Fall	Late Winter - Fall	
12	Other				
<u>a</u> 5	Overall chl-a/algal toxin improvements	н	н	н	
phyl toxi	Direct or indirect effects?	Direct	Direct	Direct	
loro	Season of greatest improvement	Late Winter - Fall	Late Winter - Fall	Late Winter - Fall	
ਦ ~	Other				
Comme	nts: suggest design criteria, groundwater co	nnectivity,			

Please make entries in green shaded cells only		
Technology/Measure: DECENTRALIZED (DIECUSE) SQURCE TREATMENT SYSTEMS		
Narrative Question	H/M/I	Narrative Response
Considerations for Summary Criteria		numeric response
Are the engineering and design requirements for this technlogy high medium or low and		
why?		
Are the infrastructure requirements for this technology high medium or low and why?	-	
Are the nindstructure requirements for this technology high, meanin, or low and why.	L	
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		
10 yrs), or low (< 2 yrs) and why?	L	
Is the energy use of this technology high, medium, or low and why?	L	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		needs study
technology/measure?)		
Is the 'fit' of this technology with other large-scale technologies being considered high,		
medium, or low? Is there a hybrid of several options that makes sense?	н	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		
medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money		
is spent for implementation, does failure mean zero WQ improvements are realized, or		
just somewhat less than anticipated)?	L	
Is the need for further scientific study of this technology prior to implementation in the		no
Klamath Basin high, medium, or low and why?	L	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		unknown, surface storage?
consumptive use?	L	
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?	н	
Does this technology/measure provide an acceptable cost to benefit ratio?	н	
Is this technology/measure a long-term solution or improvement?	н	
Are there readily identifiable legal constraints on this technology/measure?	L	
Are there readily identifiable political ramifications for this technology/measure?	L	
Are there likely to be unique opportunities for funding for this technology/measure?	н	
Will this approach create jobs? Of what sort?	L	
Are there identifiable social or cultural impacts from this technology/measure?	М	
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?	М	
What is the potential for unintended consequences for this technology/measure?	L	
What is the potential for unintended benefits?	н	duck hunting

Summary Criteria - please make entries in green shaded cells only.

Te	chnology/Measure: WETLAND RESTORATION										
-			Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis,				
Cri	terion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab				
1.1	ffectiveness										
a.	Total TN removed for project life (MT)		H (>100 MT)	H (> 100 MT)		No	Obj 1 - Nutrients				
b.	Total TP removed for project life (MT)		H (> 10 MT)	H (> 10 MT)		No	Obj 1 - Nutrients				
c.	Seasonal DO improvements - indirect or direct?	L-Indirect	L-Indirect			No	Obj 2 - Water Quality				
d.	Seasonal pH improvements - indirect or direct?	L-Indirect	L-Indirect			No	Obj 2 - Water Quality				
e.	Seasonal TSS/turbidity improvements - indirect or direct?	M-Direct	L-			No	Obj 2 - Water Quality				
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	L-Indirect	Ŀ	Ï		No	Obj 2 - Water Quality				
2. (Cost (estimated)										
a.	Total cost for project life		VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients				
b.	Cost per unit N removal (\$/kg)		L (< \$10/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients				
c.	Cost per unit P removal (\$/kg)		M (\$10 to \$100/kg)	M (\$10 to \$100/kg)		No	Obj 1 - Nutrients				
3.1	ngineering challenges	L	L	L	L	No	Narrative Questions				
4.1	nfrastructure challenges	L	L	L	L	No	Narrative Questions				
5. I	mplementation timeframe	Μ	M	М	М	Yes	Narrative Questions				
6. I	nergy Use	L	L	L	L	No	Narrative Questions				
7. (CO2 Loading	L	L	L	L	No	Narrative Questions				
8. (Compatability/synergy										
a.	With other large-scale technologies considered	н	н	н	Н	Yes	Narrative Questions				
c. With ongoing or anticipated restoration measures		н	н	н	Н	No	Narrative Questions				
9. I	Risk of failure?	L	L	L	L	Yes	Narrative Questions				
10.	Need for further scientific study?	L	L	L	L	Yes	Narrative Questions				
Co	mments: It is assumed that improvements to water quality in the Klar	nath Basin will in	nprove support of b	eneficial uses (Obje	ective 3), including	g support of aqua	tic habitat (e.g.,				

Comments: It is assumed that improvements to water quality in the klamath basin will improve support or beneficial uses (Objective 3), including support or aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace. Group comments and take away: Group felt there were many hundreds of acres in the upper basin that could be restored, with some emphasis on lakeshore restorations as a priority. Overall effectiveness is not high, but costs are low. Large scale in acres will deliver scaled benefits. If carefully executed, effectiveness could be enhanced.

Objective 1: Reduce seasonal concentrations of nutrients

Technology/Measure: WETLAND RESTORATION

			UKL	Up	per Klamath	Lir	nk River Dam to	JC Boyle Dam to	
Criterion - Use Quantitative Rankings			Tributaries		Lake		Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
	Wetlar	id area (acres)	20000		15,000		3200	0	
<u>ڳ</u>	Project	life (yrs)	50		50		50		
General Costing In	oi tal sts	Per unit area <mark>(</mark> \$/acre) ^a	4700	\$	4,700		\$4,700		
	<u>ଜ</u> ୫	Sub-total capital costs		\$	70,500,000	\$	15,040,000		\$ seems low compared to Eli's initial spreadsheets
	5 0	Per unit area (\$/acre/yr) ^b			100	\$	100		
	O&I	Annual (\$/yr)		\$	1,500,000	\$	320,000		
		Sub-total O&M (\$)		\$	75,000,000	\$	16,000,000		
	Total cost for project life			\$:	145,500,000	\$	31,040,000		
e	N remo			50		50			
- P	P remo	val rate (g P/m2/yr)					0.5		
2	P "avo	ded" loading rate (g P/m2/yr) ^c			1.62				
Ze	Annua	TN load removed (MT/yr)			1108		236		
e e	Annua	TP load removed (MT/yr)			98		6		
10 L	Total 1	N removed for project life (MT)			55,393		11,817		
Rei	Total 1	P removed for project life (MT)			4,917		324		
, ti	TN uni	t removal cost (\$/kg)		\$	3	\$	3		
, >	TP uni	t removal cost (\$/kg)		\$	30	\$	96		

^a Includes land acquisition and construction. Low end of per-acre land costs assumed to be \$3,000 (i.e., mid-way between \$700-750 cost for 1990s Wood River land acquisitions and the \$5,000 current small-parcel estimate from Deas (2011). Lower estimate construction costs assumed to be \$1,700/acre based on 2000-2010 construction costs for entire Williamson River Delta project (i.e., \$10M/5,800 wetland acres = \$1,700/acre) http://www.fws.gov/klamathfallsfwo/suckers/sucker_pub/oct08posters/RestoringWetlands-SternHendrickson.pdf. Higher estimate construction costs assumed to be \$5,600/acre from Mahugh et al. (2009).

^bO&M costs very low but unknown (no pumping/energy but: security, fencing, monitoring, etc.).

^c Re-flooding north/west side of the Williamson River Delta (Tulana Farms) initially released 2 MT of phosphorus (Wong et al. 2011), whereas previous annual P export to lake was 21. 25 MT (Synder and Morace 1997), indicating 21 MT reduced loading to the lake in the first year (and release of P should be lower than 2 MT in subsequent years). 21 MT/yr/3,200 acres=1.8 g P/m2/yr.

Comments:

Objective 2: Improve overall water quality - please make entries in green shaded cells only.										
Technol	ogy/Measure: WETLAND RESTORATION									
Criterio	n - Use Qualitative or H/M/L Rankings	UKL Tributaries	Upper Klamath Lake	Link River Dam to Keno Dam	JC Boyle Dam to Iron Gate Dam	Line of Reasoning/Notes				
τ, σ	Overall DO improvements	L	L							
/ger	Direct or indirect effects?	Indirect	Indirect							
ši Š	Season of greatest improvement	Summer/Fall	Summer/Fall							
<u> </u>	Other									
	Overall pH improvements	L	L			not applicable in wetland itself				
Hd	Direct or indirect effects?	Indirect	Indirect							
	Season of greatest improvement									
	Other									
ature	Overall water temperature improvements	L	n/a			assuming in tribs less irrigation might decrease temps and veg might be denser providing shade				
Ser	Direct or indirect effects?	Indirect	Indirect							
eul	Season of greatest improvement									
F	Other									
g	Overall TSS/turbidity improvements	М	L							
d y	Direct or indirect effects?	Direct								
Υ, T	Season of greatest improvement									
Ts	Other									
÷	Overall chl-a/algal toxin improvements	L	L							
hdo Ilga	Direct or indirect effects?	Indirect								
lord a/a	Season of greatest improvement									
<u>ଚ</u> ଁ	Other									
Comme	nts:									

Please make entries in green shaded cells only.		
Technology/Measure: WETLAND RESTORATION		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low and		
why?	L	
Are the infrastructure requirements for this technology high, medium, or low and why?		
	L	
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		based on number of acres, acquisition, permitting
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	L	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		
technology/measure?)	L	
Is the 'fit' of this technology with other large-scale technologies being considered high,		fits with almost any other approach
medium, or low? Is there a hybrid of several options that makes sense?	н	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		
medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money		already going on in Basin
is spent for implementation, does failure mean zero WQ improvements are realized, or		
just somewhat less than anticipated)?	L	
Is the need for further scientific study of this technology prior to implementation in the		might be site specific issues
Klamath Basin high, medium, or low and why?	L	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		might need water rights transfer. Could lead to instream leases
consumptive use?	н	
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?	м	define global?
Does this technology/measure provide an acceptable cost to benefit ratio?		medium to high especially if you consider all beneficial uses and ecosystem services. Community is a big
	н	factor
Is this technology/measure a long-term solution or improvement?	н	
Are there readily identifiable legal constraints on this technology/measure?	L	water rights, permitting for restoration, ESA species, land taxes, cultural resources
Are there readily identifiable political ramifications for this technology/measure?		
	м	community acceptance - tax revenue, secondary ag economics, removing productive ag land, precidents set
Are there likely to be unique opportunities for funding for this technology/measure?		already established funding sources, diverse funding. OWEB, NFWF, NRCS, NGO's, NAWCA, Tribes, USFWS,
	н	private funds
Will this approach create jobs? Of what sort?	L	losses balance gains
Are there identifiable social or cultural impacts from this technology/measure?	н	loss of farm jobs, tribal cultural values improved
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		upstream of dams. Does address upstream conditions necessary for anadromous fish. Helps maintain higher
Dams?	L	summer base flows
What is the potential for unintended consequences for this technology/measure?	L	

Summary Criteria - please make entries in green shaded cells only.

fechnology/Measure: TREATMENT WETLANDS										
		Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis,				
Criterion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab				
1. Effectiveness										
a. Total TN removed for project life (MT)			H (>100 MT)		No	Obj 1 - Nutrients				
b. Total TP removed for project life (MT)			H (> 10 MT)		No	Obj 1 - Nutrients				
c. Seasonal DO improvements - indirect or direct?			M-Indirect		No	Obj 2 - Water Quality				
d. Seasonal pH improvements - indirect or direct?			L-Indirect		No	Obj 2 - Water Quality				
e. Seasonal TSS/turbidity improvements - indirect or direct?			H-Direct		No	Obj 2 - Water Quality				
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	H-Direct	H-Direct	L-Direct		No	Obj 2 - Water Quality				
2. Cost (estimated)										
a. Total cost for project life			H (\$1M to \$100M)		No	Obj 1 - Nutrients				
b. Cost per unit N removal (\$/kg)			L (< \$10/kg)		Yes	Obj 1 - Nutrients				
c. Cost per unit P removal (\$/kg)			H (>\$100/kg)		Yes	Obj 1 - Nutrients				
3. Engineering challenges	м	М	M	Μ	Yes	Narrative Questions				
4. Infrastructure challenges	м	М	M	M	Yes	Narrative Questions				
5. Implementation timeframe	м	м	м	м	Yes	Narrative Questions				
6. Energy Use	м	м	M	м	No	Narrative Questions				
7. CO2 Loading	L	L	L	L	Yes	Narrative Questions				
8. Compatability/synergy										
a. With other large-scale technologies considered	н	н	н	н	No	Narrative Questions				
c. With ongoing or anticipated restoration measures	М	М	M	Μ	Yes	Narrative Questions				
9. Risk of failure?	L	L	L	L	Yes	Narrative Questions				
10. Need for further scientific study?	м	м	м	м	Yes	Narrative Questions				

Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace. Group comments and take aways: On farm ag return flow treatment /avoidance might be more feasible than treatment wetlands lower down in tributaries. Group was concerned that the model example was not entirely accurate, or tranportable as a template to other situations. Treatment wetlands are sui generis, dependent on flow, constituents of interest, and the goals for the project. These can be very effective, but tend to come at a high cost, which are hard to predict. Pilots are recommended. Water rights implications are high. Infrastructure limitations are a problem. Much discussion of whether these would be 'harvested' and the fate of the harvested mateial. O&M would have to increase accordingly.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Techno	Technology/Measure: TREATMENT WETLANDS										
Criteri	on - Use C	Quantitative Rankings	UKL Tributaries	Upper Klamath Lake	Lin	k River Dam to Keno Dam	JC Boyle Dam to Iron Gate Dam	Line of Reasoning/Notes			
								opportunities in UKL tribs for all point source, not just ag run off, and around UKL for			
	Wetland	area (acres)	tens/hundreds	tens/hundreds		1600		ag return flow. Modoc Point? Sevenmile?			
<u>_</u>	Project l	ife (yrs)				50					
l Bui	oital	Per unit area (\$/acre) °				\$17,500		costs likely much higher for a wetland this size. Modified costs.			
1 te	망망	Sub-total capital costs			\$	28,000,000					
	sts							changed O&M to 800 because SFMWD reference is for large scale wetlands that			
<u> </u>	ö	Per unit area (\$/acre/yr) ^b			\$	800		require less \$ per acre. Does not include harvest costs			
ß	N N	Annual (\$/yr)			\$	1,280,000.00					
	õ	Sub-total O&M (\$)			\$	64,000,000					
	Total cos	st for project life			\$	92,000,000					
	Average	flow (cfs)				70					
1	Days op	erating per year				365					
5	Mean inflow TN concentration (mg/L)					1.35					
t orde	Mean outflow TN concentration (mg/L)			0.14		wetlands generate organic N so this number is too low. Can't remove this much N. use biochar?					
E E	Mean in	flow TP concentration (mg/L)				0.41					
÷	Mean ou	utflow TP concentration (mg/L)				0.16					
2	Annual T	TN load removed (MT/yr)				76					
l a	Annual 1	IP load removed (MT/yr)				16					
물	Total TN	removed for project life (MT)				3800					
5	Total TP	removed for project life (MT)				800					
1	TN unit i	removal cost (\$/kg)			Ş	24		N-removal can be estimated using either 1st or zero order empirical models			
	TP unit r	emoval cost (\$/kg)			\$	115		P-removal can be estimated using either 1st or zero order empirical models			
	N remov	al rate (mg N/m2/d)				500					
8	P remov	al rate (g P/m2/yr)				1.5					
12	Annual T	TN load removed (MT/yr)				1182					
de la	Annual T	[P load removed (MT/yr)				10					
1 Ē 5	Total TN	removed for project life (MT)				59,086					
a de la de l	Total TP	removed for project life (MT)				486					
5	TN unit removal cost (\$/kg) \$			2		N-removal can be estimated using either 1st or zero order empirical models					
1	TP unit r	emoval cost (\$/kg)			\$	189		P-removal can be estimated using either 1st or zero order empirical models			
Inclu	les land a	equisition and construction Per-ac	re capital costs b	ased upon scale-de	pend	ent regression e	quation (Kadlec an	d Wallace 2009).			

^bO&M costs of \$260/acre/yr are the average value from SFWMD (2004). O&M costs of \$800/acre/yr are median value from Kadlec and Wallace (2009). Comments: P removal rates predicted here are potentially much lower then indicated here because P uptake is high for first several years then levels off unless biomass is harvested which would greatly increase the O&M costs. Removal in the everglades was around 70% because the baseline concentrations were much lower to begin with so plant uptake of those rates was feasible. In the straits drain, P concentration is much higher, so high removal rates not feasible.

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technol	Technology/Measure: TREATMENT WETLANDS									
			Upper Klamath	Link River Dam to	JC Boyle Dam to					
Criterio	n - Use Qualitative or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Line of Reasoning/Notes				
- g -	Overall DO improvements			М						
l ve /ger	Direct or indirect effects?			Indirect						
Š is	Season of greatest improvement			Summer/Fall						
	Other									
	Overall pH improvements			L						
I	Direct or indirect effects?			Indirect						
۵	Season of greatest improvement									
	Other									
'n	Overall water temperature improvements			L						
erat	Direct or indirect effects?			Direct						
Ē	Season of greatest improvement									
- Ho	Other									
ē	Overall TSS/turbidity improvements			Н						
d rb >	Direct or indirect effects?			Direct						
۲ ^s	Season of greatest improvement									
Ts	Other									
e v						lake treatment focuses on algae removal, trib treatmend focuses on overall				
x i s	Overall chl-a/algal toxin improvements	Н	Н	L		nutrient reduction. Reducing initial P input				
alto	Direct or indirect effects?	Direct	Direct	Direct						
alg a	Season of greatest improvement	Spring	Spring	Summer/Fall						
ς γ	Other									
Comme	nts:									

Disease make entries in groon shaded calls only		С. С
Technology (Measure) TECATRACENT WITH ANDS		
Narrative Question	H/W/L	
Considerations for summary Criteria		and Bring to Low
Are the engineering and design requirements for this techology high, medium, or low		medium to low
and why?	M	
Are the infrastructure requirements for this technology high, medium, or low and why?	м	needs are water, power, access
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		more than 10 if pilot projects implemented first
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	м	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		some pumping and construction equipment, harvest
technology/measure?)	L	
Is the 'fit' of this technology with other large-scale technologies being considered high,		
medium, or low? Is there a hybrid of several options that makes sense?	н	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		treatment versus natural wetlands competing for same land.
medium, or low?	м	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		fish passage issues a concern, low if pilot project built first and wetland is sited correctly
money is spent for implementation, does failure mean zero WQ improvements are		
realized, or just somewhat less than anticipated)?	L	
Is the need for further scientific study of this technology prior to implementation in the		need pilot studies in Klamath Basin.
Klamath Basin high, medium, or low and why?	м	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		need water right. Existing water rights best option. Non-consumptive right possible, although there is some
consumptive use?	н	consumptive use.
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?	н	
Does this technology/measure provide an acceptable cost to benefit ratio?	м	costs are unsure
Is this technology/measure a long-term solution or improvement?		
Are there readily identifiable legal constraints on this technology/measure?		
Are there readily identifiable political ramifications for this technology/measure?		
Are there likely to be unique opportunities for funding for this technology/measure?		
Will this approach create jobs? Of what sort?		
Are there identifiable social or cultural impacts from this technology/measure?		
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?		
What is the potential for unintended consequences for this technology/measure?		

Summary Criteria - please make entries in green shaded cells only.

Te	Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS										
Criterion - Use a Combination of Quantitatve and H/M/L UKL Tributaries UKL Tributaries Other Potential For analysis, gc											
Ra	nkings and Narrative Descriptions	(per unit)	(per 50 units)	Location	Comments?	tab					
1. Effectiveness											
a.	Total TN removed for project life (MT)	L (< 10 MT)	H (> 100 MT)		No	Obj 1 - Nutrients					
b.	Total TP removed for project life (MT)	L (< 1 MT)	M (<1 to 10 MT)		No	Obj 1 - Nutrients					
c.	Seasonal DO improvements - indirect or direct?	LIndirect			No	Obj 2 - Water Quality					
d.	Seasonal pH improvements - indirect or direct?	LIndirect			No	Obj 2 - Water Quality					
e.	Seasonal TSS/turbidity improvements - indirect or direct?	MDirect			No	Obj 2 - Water Quality					
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	LIndirect			No	Obj 2 - Water Quality					
2. (Cost (estimated)	. <u> </u>									
a.	Total cost for project life	L (< \$250K)	M (\$250K to \$1M)		No	Obj 1 - Nutrients					
b.	Cost per unit N removal (\$/kg)	L (< \$10/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients					
c.	Cost per unit P removal (\$/kg)	H (> \$100/kg)	H (> \$100/kg)		No	Obj 1 - Nutrients					
3. I	Engineering challenges	L	L	L	No	Narrative Questions					
4. I	nfrastructure challenges	L	L	L	Yes	Narrative Questions					
5. I	mplementation timeframe	L	L	L	No	Narrative Questions					
6.	Energy Use	L	L	L	No	Narrative Questions					
7. (CO2 Loading	L	L	L	No	Narrative Questions					
8. (Compatability/synergy										
a.	With other large-scale technologies considered	Н	Н	н	Yes	Narrative Questions					
b.	With ongoing or anticipated restoration measures	Н	Н	Н	No	Narrative Questions					
9.	Risk of failure?	М	М	м	Yes	Narrative Questions					
10.	Need for further scientific study?	М	М	M	Yes	Narrative Questions					

Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. However, since these are small systems, it is not expected that the overall losses will be large. Additionally, at this scale, ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace. Group comments and take aways: This approach is a low cost, readily funded, and fairly simple solution that should be pursued at the farm level. Where the target is a canal or more centralized source, complexity and cost increases. General concern about efficacy and long term maintenance at the farm level, and with unintended consequences.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS

			UKL Tributaries	UKL Tributaries	Other Potential	
Crit	eria - De	velopment of Cost Estimates	(per unit)	(per 50 units)	Location	Line of Reasoning/Notes
	Wetland	l area (acres)	1	50	ubiqutous	around Upper Klamath Lake and Lower Klamath Lake
						Project life likely much shorter. Total rehab likely on a
	Project	ife (yrs)	15	15		decadal scale
		Site survey	\$ 1,500	\$ 75,000		
ę.		Diversion box	\$ 2,500	\$ 125,000		
<u>_</u>	sts	Level control	\$ 3,000	\$ 150,000		
ti	8	Pumps	\$ -	\$-		
Ö	pita	Earthwork	\$ 750	\$ 37,500		
ra R	0 I	Planting	\$ 3,000	\$ 150,000		
ene		Exclusion fencing @ \$1.25 per foot	\$ 1,044	\$ 52,178		
U		Sub-total capital costs	\$ 11,794	\$ 589,678	\$-	
	5 0	Per unit area (\$/acre/yr)	\$ 260	\$ 13,000		
	O&I cost	Annual (\$/yr)	\$ 260	\$ 13,000		Likely higher if maintenance is diligent.
	ŬŬ	Sub-total O&M (\$)	\$ 3,900	\$ 195,000	\$-	
	Total co	ost for project life	\$ 15,694	\$ 784,678	\$-	
	N remov	al rate (mg N/m2/d)	100	100	100	
S S	P remov	al rate (g P/m2/yr)	1	1	1	
Ē	Total T	N removed for project life (MT)	2	111	#VALUE!	
it R	Total T	Premoved for project life (MT)	0.1	3.0	#VALUE!	
5	TN unit	removal cost (\$/kg)	\$ 7	\$7	#VALUE!	
	TP unit	removal cost (\$/kg)	\$ 259	\$ 259	#VALUE!	

Comments: The cost estimates in column D are for a single 1-acre system. This technology has broader effects when many diffuse source wetlands are implemented in a single watershed, so cost estimates are provided for a larger number of systems are given in column E. LAndowners might like because of treating their own problem

Objective 2. Improve overan water quanty - please make entries in green snaded cens only.												
Techno	Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS											
Criteria	- Use H/M/L Rankings and Narrative	Tributaries	UKL Tributaries	Other Potential								
Descrip	tions	(per unit)	(per 100 units)	Location	Line of Reasoning/Notes							
- 70 -	Overall DO improvements	L										
gen ei	Direct or indirect effects?	Indirect										
Ox, O	Season of greatest improvement	Summer/Fall										
	Other											
	Overall pH improvements	L										
Ţ	Direct or indirect effects?	Indirect										
<u> </u>	Season of greatest improvement											
	Other											
e,	Overall water temperature improvements	L										
eratu	Direct or indirect effects?	Indirect										
du	Season of greatest improvement	Summer/Fall										
-	Other											
lity	Overall TSS/turbidity improvements	м										
lirbic	Direct or indirect effects?	Direct										
S/TL	Season of greatest improvement											
TS	Other											
20					depends on source: canal has potential for direct benefits, tailwater mimimal							
×ins	Overall chl-a/algal toxin improvements	L			and indirect							
al to	Direct or indirect effects?	Indirect										
alga	Season of greatest improvement	Summer/Fall										
0	Other											
Comme	Comments:											

Please make entries in green shaded cells only.		
Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low and		
why?	L	
Are the infrastructure requirements for this technology high, medium, or low and why?	L	Decentralized, minimal power and access issues.
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		
10 yrs), or low (< 2 yrs) and why?	L	
Is the energy use of this technology high, medium, or low and why?	L	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		
technology/measure?)	L	
Is the 'fit' of this technology with other large-scale technologies being considered high,		
medium, or low? Is there a hybrid of several options that makes sense?	н	Easily used in tandem with other technologies, potential zero sum game for available funding.
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		
medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money		
is spent for implementation, does failure mean zero WQ improvements are realized, or		
just somewhat less than anticipated)?	м	risk of failure high, consequenses low
Is the need for further scientific study of this technology prior to implementation in the		
Klamath Basin high, medium, or low and why?	М	do we really know how effective this treatment is? Good KTAP project
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		
consumptive use?	L	maybe, depends on design. If no increase in cnsumptive use, no water right needed
Does this technology/measure address multiple water quality problems? Is it a more or		mainly TSS, some small nutrient improvement. Temp effects unknown. A global solution in the geographic
less of a global solution?	M	sense, but no silver bullet.
Does this technology/measure provide an acceptable cost to benefit ratio?	M	sites specific
Is this technology/measure a long-term solution or improvement?	н	Effectiveness monitoring is recommended.
Are there readily identifiable legal constraints on this technology/measure?	M	creation of jurisdictional wetlands
Are there readily identifiable political ramifications for this technology/measure?	L	low if people feel they are taking fate in own hands, treating problem on own land
Are there likely to be unique opportunities for funding for this technology/measure?	н	local funding available
Will this approach create jobs? Of what sort?	L	
Are there identifiable social or cultural impacts from this technology/measure?	L	
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?	L	indirect
		flooding downstream or adjacent neighbors, decrease in surface water availability, bugs, long term
		maintenance issues, the ducks don't come, beavers move in, endangered species move in. pesticides could
What is the potential for unintended consequences for this technology/measure?	М	concentrate at the site or move into ground water.

Summary Criteria - please make entries in green shaded cells only.

Technology/Measure: WETLAND RESTORATION						
			Link River Dam to	JC Boyle Dam to		For detailed analysis,
Criterion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Upper Klamath Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab
1. Effectiveness						
a. Total TN removed for project life (MT)	H (> 100 MT)	H (>100 MT)	H (>100 MT)		No	Obj 1 - Nutrients
b. Total TP removed for project life (MT)	H (>10 MT)	H (> 10 MT)	H (> 10 MT)		No	Obj 1 - Nutrients
c. Seasonal DO improvements - indirect or direct?	M-Indirect	M-Indirect	M-Indirect		No	Obj 2 - Water Quality
d. Seasonal pH improvements - indirect or direct?	M-Indirect	M-Indirect	M-Indirect		No	Obj 2 - Water Quality
e. Seasonal TSS/turbidity improvements - indirect or direct?	M-Direct	M-Direct	M-Direct		No	Obj 2 - Water Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	M-Indirect	M-Indirect	M-Indirect		No	Obj 2 - Water Quality
2. Cost (estimated)						
a. Total cost for project life	H (\$1M to \$100M)	H (\$1M to \$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients
b. Cost per unit N removal (\$/kg)	L (< \$10/kg)	L (< \$10/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients
c. Cost per unit P removal (\$/kg)	M (\$10 to \$100/kg)	M (\$10 to \$100/kg)	M (\$10 to \$100/kg)		No	Obj 1 - Nutrients
3. Engineering challenges	L	L	L	L	Yes	Narrative Questions
4. Infrastructure challenges	L	L	L	L	No	Narrative Questions
5. Implementation timeframe	Μ	м	м	м	No	Narrative Questions
6. Energy Use	L	L	L	L	No	Narrative Questions
7. CO2 Loading	L	L	L	L	Yes	Narrative Questions
8. Compatability/synergy						
a. With other large-scale technologies considered	н	н	н	н	No	Narrative Questions
c. With ongoing or anticipated restoration measures	н	н	н	н	No	Narrative Questions
9. Risk of failure?	L	L	L	L	Yes	Narrative Questions
10. Need for further scientific study?	L	L	L	L	Yes	Narrative Questions
Comments: It is assumed that improvements to water quality in the Kla	math Basin will improv	e support of beneficial	l uses (Objective 3), ir	cluding support o	f aquatic habitat	(e.g., support for

increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients

Technology/Measure: WETLAND RESTORATION

					Up	per Klamath	Lin	k River Dam to	JC Boyle Dam to	
Criteri	on - Use	Quantitative Rankings	UK	L Tributaries		Lake		Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
										UKL-Target is emergent marsh habitat in late summer for
										suckers. UKL tributaries-adding wetlands to wood river &
ို	Wetlan	d area (acres)	50	00		10000		10000		south fork of the Sprague is a focus (large source of P).
5	Project	life (yrs)	50			50		50		
stin	oital sts	Per unit area (\$/acre) ª		\$4,700	\$	4,700		\$4,700		
ŭ aj	8 8	Sub-total capital costs	\$	23,500,000	\$	47,000,000	\$	47,000,000		
ner 1	5 9	Per unit area (\$/acre/yr) ^b		\$100		100	\$	100		
ő	O&	Annual (\$/yr)	\$	500,000	\$	1,000,000	\$	1,000,000		
		Sub-total O&M (\$)	\$	25,000,000	\$	50,000,000	\$	50,000,000		
	Total co	st for project life	\$	48,500,000	\$	97,000,000	\$	97,000,000		
er	N remo	val rate (mg N/m2/d)	50			50		50		
P P	P remov	val rate (g P/m2/yr)						0.5		
2	P "avoid	ded" loading rate (g P/m2/yr) ^c		1.62		1.62				
-Ze	Annual	TN load removed (MT/yr)		369		739		739		
a	Annual	TP load removed (MT/yr)		33		66		20		
Ê	Total TN	I removed for project life (MT)		18,464		36,929		36,929		
8	Total TP	removed for project life (MT)		1,639		3,278		1,012		
Ë	TN unit	removal cost (\$/kg)	\$	3	\$	3	\$	3		
2	TP unit	removal cost (\$/kg)	\$	30	\$	30	\$	96		

^aIncludes land acquisition and construction. Low end of per-acre land costs assumed to be \$3,000 (i.e., mid-way between \$700-750 cost for 1990s Wood River land acquisitions and the \$5,000 current small-parcel estimate from Deas (2011). Lower estimate construction costs assumed to be \$1,700/acre based on 2000-2010 construction costs for entire Williamson River Delta project (i.e., \$10M/5,800 wetland acres = \$1,700/acre) http://www.fws.gov/klamathfallsfwo/suckers/sucker_pub/oct08posters/RestoringWetlands-SternHendrickson.pdf. Higher estimate construction costs assumed to be \$5,600/acre from Mahugh et al. (2009).

^bO&M costs very low but unknown (no pumping/energy but: security, fencing, monitoring, etc.).

^c Re-flooding north/west side of the Williamson River Delta (Tulana Farms) initially released 2 MT of phosphorus (Wong et al. 2011), whereas previous annual P export to lake was 21-25 MT (Synder and Morace 1997), indicating 21 MT reduced loading to the lake in the first year (and release of P should be lower than 2 MT in subsequent years). 21 MT/yr/3,200 acres=1.8 g P/m2/yr.

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

			-			
Techno	logy/Measure: WETLAND RESTORATION					
			Upper Klamath	Link River Dam to	JC Boyle Dam to	
Criterio	n - Use Qualitative or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
τ.	Overall DO improvements	М	М	М		
le e	Direct or indirect effects?	Indirect	Indirect	Indirect		
Oxy Oxy	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall		
	Other					
						50 years into the future emergent marsh could have a larger effect on lake pH,
	Overall pH improvements	м	м	м		moderate is a consevative estimate
Hd	Direct or indirect effects?	Indirect	Indirect	Indirect		
	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall		
	Other					
L.	Overall water temperature improvements	М	М	М		
erat	Direct or indirect effects?	Indirect	Indirect	Indirect		
Ē	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall		
⊢ e	Other					
ä	Overall TSS/turbidity improvements	М	М	М		
dr y	Direct or indirect effects?	Direct	Direct	Direct		
1 T T T	Season of greatest improvement	All	All	All		
Ts	Other					
<u>+</u> _	Overall chl-a/algal toxin improvements	М	М	М		
hd a la a	Direct or indirect effects?	Indirect	Indirect	Indirect		
	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall		
ర "	Other					

Comments: Evaluations in the tributaries will effect water quality in tribs and UKL, so those were evaluated for both. Wetlands along link river dam to keno dam would need to be placed directly along the reach to have the highest impact. Wetlands around link river dam will have to be a combination of restored and treatment wetlands. Link river dam to Keno--WQ was evaluated for downstream effects.

Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low		Some sites have the potential to carry higher engineering and design costs, due to hydrologic models, species
and why?		inventory, levee breaching design, etc. But we feel that the cost is relatively low compared to other proposed
	L	technologies.
Are the infrastructure requirements for this technology high, medium, or low and why?		
	L	
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	L	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		
technology/measure?)	L	This would be a very green option, where vegetation will take CO2 out of the atmosphere.
Is the 'fit' of this technology with other large-scale technologies being considered high,		
medium, or low? Is there a hybrid of several options that makes sense?	н	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		
medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		
money is spent for implementation, does failure mean zero WQ improvements are		This is assumed that wetlands are build, operated, and maintained properly; with monitoring post-
realized, or just somewhat less than anticipated)?	L	restoration.
Is the need for further scientific study of this technology prior to implementation in the		There is a political need to educate public that this process is needed and will have positive wq outcomes.
Klamath Basin high, medium, or low and why?		Research is needed to better understand wetland function and wq improvments with respect to lake level
	L	management.
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		
consumptive use?		
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?		
Does this technology/measure provide an acceptable cost to benefit ratio?		
Is this technology/measure a long-term solution or improvement?		
Are there readily identifiable legal constraints on this technology/measure?		
Are there readily identifiable political ramifications for this technology/measure?		Education in the klamath basin is needed to communicate the science ramifications of wetland restoration
		and WQ impacts.
Are there likely to be unique opportunities for funding for this technology/measure?		
Will this approach create jobs? Of what sort?		
Are there identifiable social or cultural impacts from this technology/measure?		
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?		
What is the potential for unintended consequences for this technology/measure?		

Summary Criteria - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS

			Link River Dam to	JC Boyle Dam to		For detailed analysis,
Criterion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Upper Klamath Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab
1. Effectiveness						
a. Total TN removed for project life (MT)		H (>100 MT)	H (>100 MT)		No	Obj 1 - Nutrients
b. Total TP removed for project life (MT)		H (> 10 MT)	H (>10 MT)		No	Obj 1 - Nutrients
c. Seasonal DO improvements - indirect or direct?		M-Indirect	M-Indirect		No	Obj 2 - Water Quality
d. Seasonal pH improvements - indirect or direct?		M-Indirect	M-Indirect		No	Obj 2 - Water Quality
e. Seasonal TSS/turbidity improvements - indirect or direct?		H-Direct	H-Direct		No	Obj 2 - Water Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?		M-Indirect	H-Indirect		No	Obj 2 - Water Quality
2. Cost (estimated)						
a. Total cost for project life		VH (>\$100M)	VH (>\$100M)		No	Obj 1 - Nutrients
b. Cost per unit N removal (\$/kg)		L (< \$10/kg)	L (< \$10/kg)		Yes	Obj 1 - Nutrients
c. Cost per unit P removal (\$/kg)		M (\$10 to \$100/kg)	M (\$10 to \$100/kg)		Yes	Obj 1 - Nutrients
3. Engineering challenges		М	М		No	Narrative Questions
4. Infrastructure challenges		Μ	М		No	Narrative Questions
5. Implementation timeframe		М	М		No	Narrative Questions
6. Energy Use		М	М		Yes	Narrative Questions
7. CO2 Loading		L	L		No	Narrative Questions
8. Compatability/synergy						
a. With other large-scale technologies considered		М	М		No	Narrative Questions
c. With ongoing or anticipated restoration measures		н	н		Yes	Narrative Questions
9. Risk of failure?		М	м		No	Narrative Questions
10. Need for further scientific study?		L	L		Yes	Narrative Questions
Comments: It is assumed that improvements to water quality in the Klar	nath Basin will in	nprove support of ber	neficial uses (Obiectiv	e 3), including sur	port of aquatic h	abitat (e.g., support for

increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS

				Upper	r Klamath	Lin	k River Dam to	JC Boyle Dam to	
Criteri	on - Use	Quantitative Rankings	UKL Tributaries	1	Lake		Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
									Target areas that have been diked and drained, but are subsided and will not resul
•	Wetland area (acres)		0		5000		5000		in emergent marsh habitat.
Ľ.	Project life (yrs)				50		50		
sting	oital	Per unit area <mark>(</mark> \$/acre) ^a			\$10,488		\$10,488		
ð	<u>8</u> 8	Sub-total capital costs		\$	52,440,000	\$	52,440,000		
eral	5 9	Per unit area (\$/acre/yr) ^b			260	\$	260		
Gen	ost ost	Annual (\$/yr)		\$ 1,	300,000.00	\$	1,300,000.00		
		Sub-total O&M (\$)		\$	65,000,000	\$	65,000,000		
	Total co	st for project life		\$ 1	17,440,000	\$	117,440,000		
	Average	e flow (cfs)			150		70		
Order	Days op	erating per year			365		365		
	Mean inflow TN concentration (mg/L)				1.35		1.35		
	Mean o	utflow TN concentration (mg/L)			0.14		0.14		
12	Mean ir	nflow TP concentration (mg/L)			0.41		0.41		
1	Mean outflow TP concentration (mg/L)				0.16		0.16		
ova	Annual	TN load removed (MT/yr)			162		76		
Ĕ	Annual	TP load removed (MT/yr)			33		16		
Ť	Total TN	I removed for project life (MT)			8100		3800		
in o	Total TP	removed for project life (MT)			1,650		800		
	TN unit	removal cost (\$/kg)		\$	14	\$	31		N-removal can be estimated using either 1st or zero order empirical models
	TP unit	removal cost (\$/kg)		\$	71	\$	147		P-removal can be estimated using either 1st or zero order empirical models
~	N remo	val rate (mg N/m2/d)			500		500		
ero	P remov	val rate (g P/m2/yr)			1.5		1.5		
2	Annual	TN load removed (MT/yr)			3693		3693		
der	Annual	TP load removed (MT/yr)			30		30		
ξō	Total TN removed for project life (MT)				184,644		184,644		
ž.	Total TP removed for project life (MT)				1,518		1,518		
5	TN unit removal cost (\$/kg)			\$	1	\$	1		N-removal can be estimated using either 1st or zero order empirical models
	TP unit	removal cost (\$/kg)		\$	77	\$	77		P-removal can be estimated using either 1st or zero order empirical models
aInclue	es land a	acquisition and construction. Per-act	re capital costs ba	sed upo	n scale-der	end	ent regression e	equation (Kadlec ar	nd Wallace 2009).

^bO&M costs of \$260/acre/yr are the average value from SFWMD (2004). O&M costs of \$800/acre/yr are median value from Kadlec and Wallace (2009). Comments:

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS

				-		
			Upper Klamath	Link River Dam to	JC Boyle Dam to	
Criterio	n - Use Qualitative or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
						There is some uncertainty on the magnitude of effect in UKL from well
e e	Overall DO improvements		м	м		functioning treatment wetlands.
vlos vAg(Direct or indirect effects?		Indirect	Indirect		
i≊ ô	Season of greatest improvement		Summer/Fall	Summer/Fall		
1	Other					
	Overall pH improvements		м	м		
I	Direct or indirect effects?		Indirect	Indirect		
٩	Season of greatest improvement		Summer/Fall	Summer/Fall		
	Other					
۲,	Overall water temperature improvements		L	L		
erat	Direct or indirect effects?		Indirect	Indirect		
d F	Season of greatest improvement		Summer/Fall	Summer/Fall		
- H	Other					
ä	Overall TSS/turbidity improvements		Н	Н		
d Z	Direct or indirect effects?		Direct	Direct		
۲ ۲	Season of greatest improvement		Summer/Fall	Summer/Fall		
_1s	Other					
-I ^I	Overall chl-a/algal toxin improvements		Μ	Н		
hqo Iga ins	Direct or indirect effects?		Indirect	Indirect		
lord tox	Season of greatest improvement		Summer/Fall	Summer/Fall		
ર ["]	Other					
Commo	nts: Siting of treatment wetlands needs to	consider impacts	on habitat quality	(should avoid disn)	acing habitat for so	nsitive species)

Please make entries in green shaded cells only.		
Technology/Measure: TREATMENT WETLANDS		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low		
and why?	м	
Are the infrastructure requirements for this technology high, medium, or low and why?		
	м	
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2		
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	м	Pumping of water has potental to require moderate energy levels
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		
technology/measure?)	L	
Is the 'fit' of this technology with other large-scale technologies being considered high,		
medium, or low? Is there a hybrid of several options that makes sense?	м	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high		assuming that these treatment wetlands do not replace habitat wetlands
. medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		
money is spent for implementation, does failure mean zero WQ improvements are		
realized, or just somewhat less than anticipated)?	м	
Is the need for further scientific study of this technology prior to implementation in the		Pilot study needed to determine site specific removal efficiency.
Klamath Basin high, medium, or low and why?	L	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		
consumptive use?		
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?		
Does this technology/measure provide an acceptable cost to benefit ratio?		
Is this technology/measure a long-term solution or improvement?		
Are there readily identifiable legal constraints on this technology/measure?		
Are there readily identifiable political ramifications for this technology/measure?		
Are there likely to be unique opportunities for funding for this technology/measure?		
Will this approach create jobs? Of what sort?		
Are there identifiable social or cultural impacts from this technology/measure?		
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?		
What is the potential for unintended consequences for this technology/measure?		

Sui	Summary Criteria - please make entries in green shaded cells only.									
Те	echnology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS									
Cri	riterion - Use a Combination of Quantitatve and H/M/L Rankings UKL Tributaries UKL Tributaries Other Potential For analysis, go to									
and Narrative Descriptions (per unit) (per 50 units) Location Comments? tab										
1. 6	Effectiveness			•		•				
a.	Total TN removed for project life (MT)	L (< 10 MT)	H (>100 MT)		No	Obj 1 - Nutrients				
b.	Total TP removed for project life (MT)	L (< 1 MT)	H (>10 MT)		No	Obj 1 - Nutrients				
c.	Seasonal DO improvements - indirect or direct?				No	Obj 2 - Water Quality				
d.	Seasonal pH improvements - indirect or direct?				No	Obj 2 - Water Quality				
e.	Seasonal TSS/turbidity improvements - indirect or direct?				No	Obj 2 - Water Quality				
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?				No	Obj 2 - Water Quality				
2. (Cost (estimated)									
a.	Total cost for project life	L (< \$250K)	H (\$1M to \$100M)		No	Obj 1 - Nutrients				
b.	Cost per unit N removal (\$/kg)	L (< \$10/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients				
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients				
3. E	Engineering challenges				No	Narrative Questions				
4. I	nfrastructure challenges				No	Narrative Questions				
5. I	mplementation timeframe				No	Narrative Questions				
6. I	Energy Use				No	Narrative Questions				
7. (CO2 Loading				No	Narrative Questions				
8. (Compatability/synergy									
a.	With other large-scale technologies considered				No	Narrative Questions				
b.	With ongoing or anticipated restoration measures				No	Narrative Questions				
9. F	Risk of failure?				No	Narrative Questions				
10.	Need for further scientific study?				No	Narrative Questions				
Со	mments: It is assumed that improvements to water quality in the	ne Klamath Basin	will improve suppo	ort of beneficial us	ses (Objective	3), including support				
of	aquatic habitat (e.g., support for increased sucker recruitment i	n Upper Klamath	Lake). This technol	ogy may result in s	some ET loss f	rom wetlands, which				
cou	Ild negatively impact surface water availability through increase	ed consumptive	use. However, since	e these are small s	systems, it is r	not expected that the				

could negatively impact surface water availability through increased consumptive use. However, since these are small systems, it is not expected that the overall losses will be large. Additionally, at this scale, ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS

			UKL Tributaries		U	JKL Tributaries	Other Poten	tial	
Crit	eria - De	velopment of Cost Estimates	(per unit)		()	per 2000 units)	Location		Line of Reasoning/Notes
Wetland area (acres)			1		2000				
	Project	life (yrs)		50		50			
		Site survey	\$	1,500	\$	3,000,000			
		Diversion box	\$	2,500	\$	5,000,000			
fe l	Capital costs	Level control	\$	3,000	\$	6,000,000			
- <u>p</u>		Pumps	\$	-	\$	-			
t,		Earthwork	\$	750	\$	1,500,000			
<u></u>		Planting	\$	3,000	\$	6,000,000			
era		Exclusion fencing @ \$1.25 per foot	\$	1,044	\$	2,087,103			
gene		Sub-total capital costs	\$	11,794	\$	23,587,103	\$	-	
	< v	Per unit area (\$/acre/yr)	\$	260	\$	520,000			
	ost ost	Annual (\$/yr)	\$	260	\$	520,000			
	00	Sub-total O&M (\$)	\$	13,000	\$	26,000,000	\$	-	
	Total co	st for project life	\$	24,794	\$	49,587,103	\$	-	
	N remo	val rate (mg N/m2/d)		100		100		100	
Nal 1	P remov	/al rate (g P/m2/yr)		1		1		1	
Ĕ	Total TN	I removed for project life (MT)		7		14,772		-	
t R	Total TP	removed for project life (MT)		0.2		404.7		-	
S S	TN unit	removal cost (\$/kg)	\$	3	\$	3	#DIV/0!		
	TP unit	removal cost (\$/kg)	\$	123	\$	123	#DIV/0!		

Comments: The cost estimates in column D are for a single 1-acre system. This technology has broader effects when many diffuse source wetlands are implemented in a single watershed, so cost estimates are provided for a larger number of systems are given in column E.

Su	Summary Criteria - please make entries in green shaded cells only.								
Те	chnology/Measure: WETLAND RESTORATION								
-			Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis,		
Cri	terion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab		
1.1	Effectiveness								
a.	Total TN removed for project life (MT)		H (> 100 MT)	H (> 100 MT)		No	Obj 1 - Nutrients		
b.	Total TP removed for project life (MT)		H (> 10 MT)	H (>10 MT)		No	Obj 1 - Nutrients		
c.	Seasonal DO improvements - indirect or direct?					No	Obj 2 - Water Quality		
d.	Seasonal pH improvements - indirect or direct?					No	Obj 2 - Water Quality		
e.	Seasonal TSS/turbidity improvements - indirect or direct?					No	Obj 2 - Water Quality		
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?					No	Obj 2 - Water Quality		
2. (2. Cost (estimated)								
a.	Total cost for project life		H (\$1M to \$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients		
b.	Cost per unit N removal (\$/kg)		L (< \$10/kg)	L (<\$10/kg)		No	Obj 1 - Nutrients		
c.	Cost per unit P removal (\$/kg)		M (\$10 to \$100/kg)	M (\$10 to \$100/kg)		No	Obj 1 - Nutrients		
3.1	Engineering challenges	м	м	М	М	No	Narrative Questions		
4.1	nfrastructure challenges	L	L	L	L	No	Narrative Questions		
5.1	mplementation timeframe	м	м	М	М	No	Narrative Questions		
6.	Energy Use	L	L	L	L	No	Narrative Questions		
7. (CO2 Loading	м	м	М	M	Yes	Narrative Questions		
8. (Compatability/synergy								
a.	With other large-scale technologies considered	н	н	н	Н	No	Narrative Questions		
c.	With ongoing or anticipated restoration measures	н	н	н	н	Yes	Narrative Questions		
9.1	Risk of failure?	м	м	М	М	Yes	Narrative Questions		
10.	Need for further scientific study?	Н	Н	н	Н	No	Narrative Questions		
Со	mments: It is assumed that improvements to water quality in the Kla	math Basin will in	nprove support of b	eneficial uses (Obje	ective 3), including	g support of aqua	tic habitat (e.g.,		

support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients

Technology/Measure: WETLAND RESTORATION

			UKL	Upp	per Klamath	Link River Dam to	JC Boyle Dam to	
Criteri	on - Use	Quantitative Rankings	Tributaries	Lake		Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
								Woods River considered UKL tributary. 300-400 additional acres
	Wetlan	d area (acres)	1000		4000	1000	270	Take. Wetland acreage depends on land owner willingness to sell
ę			1000			1000		Project life estimates should incorporate future changes
2	Project	life (yrs)			50	50)	associated with climate change
ostir	ital sts	Per unit area (\$/acre) ª		\$	4,700	\$4,700)	Cost estimates for the future are questionable and likely low
alo	S G	Sub-total capital costs		\$	18,800,000	\$ 4,700,000		
lei	5 8	Per unit area (\$/acre/yr) ^b			100	\$ 100		
Ğ	ost Og	Annual (\$/yr)		\$	400,000	\$ 100,000		
		Sub-total O&M (\$)		\$	20,000,000	\$ 5,000,000		
	Total co	st for project life		\$	38,800,000	\$ 9,700,000		
	N remo	val rate (mg N/m2/d)			50	50		
E	P remo	val rate (g P/m2/yr)				0.5	5	
2	P "avoi	ded" loading rate (g P/m2/yr) ^c			1.62			
Ž,	Annual	TN load removed (MT/yr)			295	74	ł	
val 1	Annual	TP load removed (MT/yr)			26	2	2	
Ê	Total T	I removed for project life (MT)			14,772	3,693		
a a	Total T	removed for project life (MT)			1,311	101		
Ĕ	TN unit	removal cost (\$/kg)		\$	3	\$ 3		
	TP unit	removal cost (\$/kg)		\$	30	\$ 96		

^a Includes land acquisition and construction. Low end of per-acre land costs assumed to be \$3,000 (i.e., mid-way between \$700-750 cost for 1990s Wood River land acquisitions and the \$5,000 current small-parcel estimate from Deas (2011). Lower estimate construction costs assumed to be \$1,700/acre based on 2000-2010 construction costs for entire Williamson River Delta project (i.e., \$10M/5,800 wetland acres = \$1,700/acre) http://www.fws.gov/klamathfallsfwo/suckers/sucker_pub/oct08posters/RestoringWetlands-SternHendrickson.pdf. Higher estimate construction costs assumed to be \$5,600/acre from Mahugh et al. (2009). ^bO&M costs very low but unknown (no pumping/energy but: security, fencing, monitoring, etc.).

^c Re-flooding north/west side of the Williamson River Delta (Tulana Farms) initially released 2 MT of phosphorus (Wong et al. 2011), whereas previous annual P export to lake was 21-25 MT (Synder and Morace 1997), indicating 21 MT reduced loading to the lake in the first year (and release of P should be lower than 2 MT in subsequent years). 21 MT/yr/3,200 acres=1.8 g P/m2/yr.

Why not flood the refuge instead of purchasing new acreage for wetlands

		_							
Please make entries in green shaded cells only.									
Technology/Measure: WETLAND RESTORATION									
Narrative Question	H/M/L	Narrative Response							
Considerations for Summary Criteria	_								
Are the engineering and design requirements for this techology high, medium, or low									
and why?	м								
Are the infrastructure requirements for this technology high, medium, or low and why?	L								
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-	-								
10 yrs), or low (< 2 yrs) and why?	м								
Is the energy use of this technology high, medium, or low and why?	L								
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		questions regarding methane production from wetlands							
technology/measure?)	м								
Is the 'fit' of this technology with other large-scale technologies being considered high,									
medium, or low? Is there a hybrid of several options that makes sense?	н								
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,	,	may be a competition for land between the different wetland solutions							
medium, or low?	н								
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		uncertainty regarding phosphorus removal							
money is spent for implementation, does failure mean zero WQ improvements are									
realized, or just somewhat less than anticipated)?	м								
Is the need for further scientific study of this technology prior to implementation in the									
Klamath Basin high, medium, or low and why?	н								
Additional Considerations									
Does this technology require that a water right be obtained for consumptive or non-									
consumptive use?	н								
Does this technology/measure address multiple water quality problems? Is it a more or									
less of a global solution?	м								
Does this technology/measure provide an acceptable cost to benefit ratio?	L	low for P removal, good for habitat							
Is this technology/measure a long-term solution or improvement?	н								
Are there readily identifiable legal constraints on this technology/measure?	М	acquisition of land							
Are there readily identifiable political ramifications for this technology/measure?	н	competition with ag							
Are there likely to be unique opportunities for funding for this technology/measure?	М	other sources of funding besides P removal							
Will this approach create jobs? Of what sort?	М	initial construction							
Are there identifiable social or cultural impacts from this technology/measure?	М	competition with ag, good for bird watchers and hunters							
How will this technology interact with dam removal, should there be an affirmative									
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate									
Dams?	н								
What is the potential for unintended consequences for this technology/measure?	М	invasive species, bioaccumulation							

Summary Criteria - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS

		Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis,
Criterion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab
1. Effectiveness						
a. Total TN removed for project life (MT)			H (> 100 MT)		No	Obj 1 - Nutrients
b. Total TP removed for project life (MT)			H (> 10 MT)		No	Obj 1 - Nutrients
c. Seasonal DO improvements - indirect or direct?	M-Indirect	M-Indirect	M-Indirect	M-Indirect	No	Obj 2 - Water Quality
d. Seasonal pH improvements - indirect or direct?	M-Indirect	M-Indirect	M-Indirect	M-Indirect	No	Obj 2 - Water Quality
e. Seasonal TSS/turbidity improvements - indirect or direct?	H-Direct	H-Direct	H-Direct	H-Direct	No	Obj 2 - Water Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	M-Indirect	H-Direct	H-Direct	H-Direct	No	Obj 2 - Water Quality
2. Cost (estimated)						
a. Total cost for project life			VH (>\$100M)		No	Obj 1 - Nutrients
b. Cost per unit N removal (\$/kg)			L (< \$10/kg)		Yes	Obj 1 - Nutrients
c. Cost per unit P removal (\$/kg)			H (>\$100/kg)		Yes	Obj 1 - Nutrients
3. Engineering challenges	М	М	м	М	Yes	Narrative Questions
4. Infrastructure challenges	М	М	м	М	Yes	Narrative Questions
5. Implementation timeframe	М	м	м	М	No	Narrative Questions
6. Energy Use	L	L	L	L	No	Narrative Questions
7. CO2 Loading	L	L	L	L	No	Narrative Questions
8. Compatability/synergy						
a. With other large-scale technologies considered	н	н	н	н	No	Narrative Questions
c. With ongoing or anticipated restoration measures	Н	н	н	Н	No	Narrative Questions
9. Risk of failure?	М	М	М	М	Yes	Narrative Questions
10. Need for further scientific study?	Н	н	н	н	No	Narrative Questions

Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS											
Criteri	on - Use	Quantitative Rankings	UKL Tributaries	Upper Klamath Lake	Link River Dar Keno Dam	m to n	JC Boyle Dam to Iron Gate Dam	Line of Reasoning/Notes			
ę								We assumed some portion of the restored wetlands could be desinged as treatment wetlands. Klamath Straits Drain area (320 acres) has the greatest potential to intercept ag drainage prior to reaching the river. The estimate for Link River Dam to Keno is an estimate to treat the Klamath River based on CH2MHill's 2012 wetland			
2	Wetlan	d area (acres)	1000	4000	40	0000	270	study.			
sti	Project	life (yrs)	30	30		30	30				
2	sts oftal	Per unit area (\$/acre) ª	\$10,488	10488	\$10	0,488	10488				
Le la	8 8	Sub-total capital costs			\$ 419,520,	,000		Unit cost may vary depending upon project size			
8	N	Per unit area (\$/acre/yr) ^b	260	260	\$	260	260				
1	ost ost	Annual (\$/yr)			\$ 10,400,000	0.00					
1		Sub-total O&M (\$)			\$ 312,000,	,000					
	Total co	st for project life			\$ 731,520,	,000					
	Average	flow (cfs)	70	70		1097	70				
	Days op	perating per year	365	365		365	365				
卢	Mean ir	nflow TN concentration (mg/L)	1.35	1.35		1.35	1.35				
δ	Mean o	utflow TN concentration (mg/L)	0.14	0.14		0.14	0.14				
12	Mean inflow TP concentration (mg/L)		0.41	0.41		0.41	0.41				
1	Mean o	utflow TP concentration (mg/L)	0.16	0.16		0.16	0.16				
5	Annual	TN load removed (MT/yr)			:	1185					
5	Annual	TP load removed (MT/yr)				245					
8	Total TN	I removed for project life (MT)			35	5550					
5	Total TP	removed for project life (MT)			7	7,350					
	TN unit	removal cost (\$/kg)			\$	21		N-removal can be estimated using either 1st or zero order empirical models			
	TP unit	removal cost (\$/kg)			\$	100		P-removal can be estimated using either 1st or zero order empirical models			
	N remov	val rate (mg N/m2/d)				500					
ă	P remov	val rate (g P/m2/yr)				1.5					
Ξ.	Annual	TN load removed (MT/yr)			29	9543					
de la	Annual	TP load removed (MT/yr)				243					
50	Total TN	I removed for project life (MT)			886,	,293					
	Total TP	removed for project life (MT)			7,	,285					
5	TN unit	removal cost (\$/kg)			\$	1		N-removal can be estimated using either 1st or zero order empirical models			
_	TP unit	removal cost (\$/kg)			\$	100		P-removal can be estimated using either 1st or zero order empirical models			
*Inclue	les land	acquisition and construction [.] Per-ac	re capital costs b	ased upon scale-de	pendent regres	ssion e	quation (Kadlec a	nd Wallace 2009).			
0.0 M		cocole and has not the surgery and had	Contraction (200	A) 08 M	000/		and the first factor March				

^bO&M costs of \$260/acre/yr are the average value from SFWMD (2004). O&M costs of \$800/acre/yr are median value from Kadlec and Wallace (2009 Comments:

Objective 2:	Improve overall wa	ter quality - pl	lease make entries in	green shaded cells only.	

Technology/Measure: TREATMENT WETLANDS

			Upper Klamath	Link River Dam to	JC Boyle Dam to		
Criterion - Use Qualitative or H/M/L Rankings		UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Line of Reasoning/Notes	
υ_	Overall DO improvements	М	М	М	М	may release low DO water from wetland, but also removes nutrients	
issolve Dxyger	Direct or indirect effects?	Indirect	Indirect	Indirect	Indirect		
	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall		
ā	Other						
	Overall pH improvements	М	М	М	М		
I	Direct or indirect effects?	Indirect	Indirect	Indirect	Indirect		
٩	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall		
	Other						
5	Overall water temperature improvements	L	L	L	L		
erat	Direct or indirect effects?	Direct	Direct	Direct	Direct		
ă Ť	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall		
	Other						
ē	Overall TSS/turbidity improvements	Н	Н	Н	Н		
d rb	Direct or indirect effects?	Direct	Direct	Direct	Direct		
۲, s	Season of greatest improvement	n/a	n/a	n/a	n/a		
Ts	Other						
<u></u>	Overall chl-a/algal toxin improvements	М	Н	Н	Н		
hqo Iga	Direct or indirect effects?	Indirect	Direct	Direct	Direct		
lor tox	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall		
ර ~	Other						
Comme	nts:						

Please make entries in green shaded cells only.							
Technology/Measure: TREATMENT WETLANDS							
Narrative Question	H/M/L	Narrative Response					
Considerations for Summary Criteria							
Are the engineering and design requirements for this techology high, medium, or low		At the larger scale, the engineering aspects are more complex and challenging					
and why?	м						
Are the infrastructure requirements for this technology high, medium, or low and why?		Depends on the location, water surface elevation and site charateristics					
	м						
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2							
10 yrs), or low (< 2 yrs) and why?	м						
Is the energy use of this technology high, medium, or low and why?	L						
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this							
technology/measure?)	L						
Is the 'fit' of this technology with other large-scale technologies being considered high,							
medium, or low? Is there a hybrid of several options that makes sense?	н						
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high							
medium, or low?	н						
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		Not much certainty about removal effectiveness and limited data on wetland performance in Klamath					
money is spent for implementation, does failure mean zero WQ improvements are		watershed					
realized, or just somewhat less than anticipated)?	M						
Is the need for further scientific study of this technology prior to implementation in the							
Klamath Basin high, medium, or low and why?	н						
Additional Considerations							
Does this technology require that a water right be obtained for consumptive or non-							
consumptive use?	н						
Does this technology/measure address multiple water quality problems? Is it a more or							
less of a global solution?	н	more of a global solution					
Does this technology/measure provide an acceptable cost to benefit ratio?		???					
Is this technology/measure a long-term solution or improvement?	н						
Are there readily identifiable legal constraints on this technology/measure?	м	willing land owners are needed					
Are there readily identifiable political ramifications for this technology/measure?	н	taking land out of ag production					
Are there likely to be unique opportunities for funding for this technology/measure?	М	carbon offsets, ecosystem services market					
Will this approach create jobs? Of what sort?	M	initial construction, ongoing operation					
Are there identifiable social or cultural impacts from this technology/measure?	Н	conflicts with agriculture, land use and water use					
How will this technology interact with dam removal, should there be an affirmative							
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate							
Dams?	Н	compatible with dam removal, should improve downstream water quality					
What is the potential for unintended consequences for this technology/measure?	М	possible export of nutrients, bioaccumulation					

_										
Summary Criteria - please make entries in green shaded cells only.										
Те	Technology/Measure: DECENTRALIZED (DIFFLISE) SOLIRCE TREATMENT SYSTEMS									
Cri	Criterion - Use a Combination of Quantitatve and H/M/L Rankings UKL Tributaries UKL Tributaries Other Potential For analysis, go to									
an	d Narrative Descriptions	(per unit)	(per 50 units)	Location	Comments?	tab				
1.	1. Effectiveness									
а.	Total TN removed for project life (MT)	L (< 10 MT)	H (>100 MT)		No	Obi 1 - Nutrients				
b.	Total TP removed for project life (MT)	L(<1MT)	H (> 10 MT)		No	Obi 1 - Nutrients				
c.	Seasonal DO improvements - indirect or direct?	Lindirect	MIndirect	M-Indirect	No	Obj 2 - Water Quality				
d.	Seasonal pH improvements - indirect or direct?	LIndirect	MIndirect	M-Indirect	No	Obj 2 - Water Quality				
e.	Seasonal TSS/turbidity improvements - indirect or direct?	LDirect	HDirect	H-Direct	No	Obj 2 - Water Quality				
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	LIndirect	HDirect	H-Direct	No	Obj 2 - Water Quality				
2.	Cost (estimated)									
a.	Total cost for project life	L (< \$250K)	H (\$1M to \$100M)		No	Obj 1 - Nutrients				
b.	Cost per unit N removal (\$/kg)	L (< \$10/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients				
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients				
3.	Engineering challenges	L	L	L	Yes	Narrative Questions				
4.	Infrastructure challenges	L	L	L	No	Narrative Questions				
5.	Implementation timeframe	м	М	м	No	Narrative Questions				
6.	Energy Use	L	L	L	No	Narrative Questions				
7.	CO2 Loading	L	L	L	No	Narrative Questions				
8.	Compatability/synergy			•						
a.	With other large-scale technologies considered	н	н	н	No	Narrative Questions				
b.	With ongoing or anticipated restoration measures	н	н	н	No	Narrative Questions				
9.	Risk of failure?	М	М	М	Yes	Narrative Questions				
10	Need for further scientific study?	н	н	н	No	Narrative Questions				
Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support										
of	of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which									
со	uld negatively impact surface water availability through increas	ed consumptive	use. However, since	e these are small s	systems, it is r	not expected that the				
ov	overall losses will be large. Additionally, at this scale. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or havfields they									

replace.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS

			UKL Tributaries		1	UKL Tributaries	Other Potential		
Criteria - Development of Cost Estimates		(per unit)			(per 50 units)	Location		Line of Reasoning/Notes	
Wetland area (acres)			1		50				
Project life (yrs)			50		50				
		Site survey	\$	1,500	\$	75,000			
		Diversion box	\$	2,500	\$	125,000			
General Costing Info	sts	Level control	\$	3,000	\$	150,000			
	8	Pumps	\$	-	\$	-			
	Capita	Earthwork	\$	750	\$	37,500			
		Planting	\$	3,000	\$	150,000			
		Exclusion fencing @ \$1.25 per foot	\$	1,044	\$	52,178			
		Sub-total capital costs	\$	11,794	\$	589,678	\$-		
	~ v	Per unit area (\$/acre/yr)	\$	260	\$	13,000			
	08N ost	Annual (\$/yr)	\$	260	\$	13,000			
	00	Sub-total O&M (\$)	\$	13,000	\$	650,000	\$-		
	Total co	st for project life	\$	24,794	\$	1,239,678	\$ -		
	N remo	N removal rate (mg N/m2/d)		100		100	1	00	
Nal	P removal rate (g P/m2/yr)			1		1		1	
t Remo	Total TN removed for project life (MT)			7		369	-		
	Total TP removed for project life (MT)			0.2		10.1	-		
Uni	TN unit	removal cost (\$/kg)	\$	3	\$	3	#DIV/0!		
TP unit removal cost (\$/kg)		\$	123	\$	123	#DIV/0!			

Comments: The cost estimates in column D are for a single 1-acre system. This technology has broader effects when many diffuse source wetlands are implemented in a single watershed, so cost estimates are provided for a larger number of systems are given in column E.

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS

Criteria	 Use H/M/L Rankings and Narrative 	Tributaries	UKL Tributaries	Other Potential				
Descriptions		(per unit)	(per 100 units)	Location	Line of Reasoning/Notes			
73	Overall DO improvements	L	М	м	other potential location may be Lost River basin, Shasta, Scott River			
issolved Oxygen	Direct or indirect effects?	Indirect	Indirect	Indirect				
	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall				
	Other							
	Overall pH improvements	L	м	м				
I	Direct or indirect effects?	Indirect	Indirect	Indirect				
٩	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall				
	Other							
e e	Overall water temperature improvements	L	L	L				
eratu	Direct or indirect effects?	Direct	Direct	Direct				
hpe	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall				
Чe	Other							
ţ	Overall TSS/turbidity improvements	L	н	н				
rbic	Direct or indirect effects?	Direct	Direct	Direct				
ΞĻ	Season of greatest improvement	n/a	n/a	n/a				
E S	Other							
n n	Overall chl-a/algal toxin improvements	L	н	н				
phyl toxi	Direct or indirect effects?	Indirect	Direct	Direct				
orofigal	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall				
_a Ch	Other							
Comme	omments:							

Please make entries in green shaded cells only.							
Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS							
Narrative Question	H/M/L	Narrative Response					
Considerations for Summary Criteria	_						
Are the engineering and design requirements for this techology high, medium, or low		assumes small, localized, onfarm treatment wetlands					
and why?	L						
Are the infrastructure requirements for this technology high, medium, or low and why?	L						
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-							
10 yrs), or low (< 2 yrs) and why?	м						
Is the energy use of this technology high, medium, or low and why?	L						
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this							
technology/measure?)	L						
Is the 'fit' of this technology with other large-scale technologies being considered high,							
medium, or low? Is there a hybrid of several options that makes sense?	н						
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,							
medium, or low?	н						
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		questions about long term maintenance					
money is spent for implementation, does failure mean zero WQ improvements are							
realized, or just somewhat less than anticipated)?	м						
Is the need for further scientific study of this technology prior to implementation in the							
Klamath Basin high, medium, or low and why?	Н						
Additional Considerations							
Does this technology require that a water right be obtained for consumptive or non-		convert existing water rights to include wetland function as a beneficial use appears to be a feasible way to					
consumptive use?	М	deal with this					
Does this technology/measure address multiple water quality problems? Is it a more or							
less of a global solution?	м						
Does this technology/measure provide an acceptable cost to benefit ratio?	н						
Is this technology/measure a long-term solution or improvement?	н	questions about long term maintenance					
Are there readily identifiable legal constraints on this technology/measure?	L						
Are there readily identifiable political ramifications for this technology/measure?	L	unless it is required					
Are there likely to be unique opportunities for funding for this technology/measure?	м	carbon trading, habitat improvements, conservation practices					
Will this approach create jobs? Of what sort?	L						
Are there identifiable social or cultural impacts from this technology/measure?	L						
How will this technology interact with dam removal, should there be an affirmative							
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate							
Dams?	н						
What is the potential for unintended consequences for this technology/measure?	L	invasive species, noxious weeds, mosquitoes, increased export if wetland is drained					
	-		-	-		-	
--	--	------------------	----------------------	----------------------	-------------------	-------------------	------------------------
Те	chnology/Measure: WETLAND RESTORATION						
			Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis,
Cri	terion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab
1.	Effectiveness						
a.	Total TN removed for project life (MT)		H (> 100 MT)	H (> 100 MT)		No	Obj 1 - Nutrients
b.	Total TP removed for project life (MT)		H (>10 MT)	H (> 10 MT)		No	Obj 1 - Nutrients
c.	Seasonal DO improvements - indirect or direct?	L-Indirect	M-Indirect	L-Indirect	L-Indirect	No	Obj 2 - Water Quality
d.	Seasonal pH improvements - indirect or direct?	L-Indirect	M-Indirect	L-Indirect	L-Indirect	No	Obj 2 - Water Quality
e.	Seasonal TSS/turbidity improvements - indirect or direct?		M-Direct			No	Obj 2 - Water Quality
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?		M-Indirect			No	Obj 2 - Water Quality
2.	Cost (estimated)						
a.	Total cost for project life		VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients
b.	Cost per unit N removal (\$/kg)		L (<\$10/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients
c.	Cost per unit P removal (\$/kg)		M (\$10 to \$100/kg)	M (\$10 to \$100/kg)		No	Obj 1 - Nutrients
3.	Engineering challenges	М	М	М	М	Yes	Narrative Questions
4.	nfrastructure challenges	L	L	L	L	No	Narrative Questions
5.	mplementation timeframe	н	н	н	н	No	Narrative Questions
6.	Energy Use	L	L	L	L	No	Narrative Questions
7.	CO2 Loading	L	L	L	L	No	Narrative Questions
8.	Compatability/synergy						
a.	With other large-scale technologies considered	н	Н	н	Н	No	Narrative Questions
c. With ongoing or anticipated restoration measures		м	М	М	М	No	Narrative Questions
9.	Risk of failure?	L	L	L	L	No	Narrative Questions
10	Need for further scientific study?	М	М	М	М	Yes	Narrative Questions
Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support of aquatic habitat (e.g.,							
su	pport for increased sucker recruitment in Upper Klamath Lake). This te	chnology may res	sult in some ET loss	from wetlands, whi	ch could negative	ly impact surface	water availability

through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients

Technology/Measure: WETLAND RESTORATION

			UKL	L Upper Klamath		nk River Dam	JC Boyle Dam to	
Criterio	on - Use (Quantitative Rankings	Tributaries	Lake	t	o Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
								Goal = Maximum acreage on Upper Klamath Lake.
								Intent for UKL tribs is for riparian plant restoration,
								not limited to wetland plant restoration. Refuge not
								included in UKL acreage number, nor is expansion of
								walking wetland program, although both of these
을								areas should be promoted for this technology. For
-								this technology, restored wetland corridors are best
i i i i i								suited for non-lake reaches. Boyle reach acreage
3	Wetlan	d area (acres)	3000	12000		1400	270	based on assumption of dam removal.
	Project	life (yrs)	50	50		50	50	
Gene	ti _ ti	Per unit area (\$/acre) °		\$ 4,700		\$4,700		
	8 . 8	Sub-total capital costs		\$ 56,400,000	\$	6,580,000		
	s v	Per unit area (\$/acre/yr) ^b		100	\$	100		
	ost OS	Annual (\$/yr)		\$ 1,200,000	\$	140,000		
	00	Sub-total O&M (\$)		\$ 60,000,000	\$	7,000,000		
	Total co	st for project life		\$116,400,000	\$	13,580,000		
5	N remo	val rate (mg N/m2/d)		50		50		
5	P remov	val rate (g P/m2/yr)				0.5		
2	P "avoi	ded" loading rate (g P/m2/yr) ^c		1.62				
N.	Annual	TN load removed (MT/yr)		886		103		
g	Annual	TP load removed (MT/yr)		79		3		
2 E	Total TN	I removed for project life (MT)		44,315		5,170		
2	Total TP	removed for project life (MT)		3,934		142		
Έ	TN unit	removal cost (\$/kg)		\$ 3	\$	3		
	TP unit	removal cost (\$/kg)		\$ 30	\$	96		

^a Includes land acquisition and construction. Low end of per-acre land costs assumed to be \$3,000 (i.e., mid-way between \$700-750 cost for 1990s Wood River land acquisitions and the \$5,000 current small-parcel estimate from Deas (2011). Lower estimate construction costs assumed to be \$1,700/acre based on 2000-2010 construction costs for entire Williamson River Delta project (i.e., \$10M/5,800 wetland acres = \$1,700/acre)

http://www.fws.gov/klamathfallsfwo/suckers/sucker_pub/oct08posters/RestoringWetlands-SternHendrickson.pdf. Higher estimate construction costs ⁹O&M costs very low but unknown (no pumping/energy but: security, fencing, monitoring, etc.).

^c Re-flooding north/west side of the Williamson River Delta (Tulana Farms) initially released 2 MT of phosphorus (Wong et al. 2011), whereas previous annual P export to lake was 21-25 MT (Synder and Morace 1997), indicating 21 MT reduced loading to the lake in the first year (and release of P should be lower than 2 MT in subsequent years). 21 MT/yr/3,200 acres=1.8 g P/m2/yr. Comments:

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Techno	logy/Measure: WETLAND RESTORATION					
			Upper Klamath	Link River Dam to	JC Boyle Dam to	
Criterio	n - Use Qualitative or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
ved Gen	Overall DO improvements	L	М	L	L	Riparian corridors on non-lake reaches might eventually provide more shade.
sol ^s	Direct or indirect effects?	Indirect	Indirect	Indirect	Indirect	
ë o	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall	
	Other					
	Overall pH improvements	L	М	L	L	
Т	Direct or indirect effects?	Indirect	Indirect	Indirect	Indirect	
Q.	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall	
	Other					
ature	Overall water temperature improvements	м	L	L	L	Riparian corridors on non-lake reaches might eventually provide more shade.
oer	Direct or indirect effects?	Direct	Indirect	Direct	Direct	
E I	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall	
E.	Other					
<u>o</u>	Overall TSS/turbidity improvements		М			
v b	Direct or indirect effects?		Direct			
₹,	Season of greatest improvement		Spring			
T _S	Other					
bhyll-a / toxins	Overall chl-a/algal toxin improvements		М			IMPORTANT NOTE: Nutrient removal and habitat benefits greatly depend on the design and operation of the wetlands (esp. considering seasonal pumping regimes).
3al t	Direct or indirect effects?		Indirect			
행	Season of greatest improvement		Summer/Fall			
0	Other					
Comme	nts:				·	•

Prease make entries in green shaded cens only.										
Technology/Measure: WETLAND RESTORATION										
Narrative Question	H/M/L	Narrative Response								
Considerations for Summary Criteria										
Are the engineering and design requirements for this techology high, medium, or low		Maybe closer to HIGH?								
and why?	M									
Are the infrastructure requirements for this technology high, medium, or low and why?	L									
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2	-									
10 yrs), or low (< 2 yrs) and why?	н									
Is the energy use of this technology high, medium, or low and why?	L									
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this										
technology/measure?)	L									
Is the 'fit' of this technology with other large-scale technologies being considered high,										
medium, or low? Is there a hybrid of several options that makes sense?	н									
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high	,									
medium, or low?	м									
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the										
money is spent for implementation, does failure mean zero WQ improvements are										
realized, or just somewhat less than anticipated)?	L									
Is the need for further scientific study of this technology prior to implementation in the		For the size of these projects, pilot studies should be conducted! Revisiting results from monitoring of TNC								
Klamath Basin high, medium, or low and why?	м	project is also worthwhile.								
Additional Considerations	_									
Does this technology require that a water right be obtained for consumptive or non-		Higher on non-lake reaches. Maybe higher for pump-driven designs, too.								
consumptive use?	н									
Does this technology/measure address multiple water quality problems? Is it a more or										
less of a global solution?	н									
Does this technology/measure provide an acceptable cost to benefit ratio?		Refer to Obj 1 Sheet.								
Is this technology/measure a long-term solution or improvement?	н									
Are there readily identifiable legal constraints on this technology/measure?	н									
Are there readily identifiable political ramifications for this technology/measure?	н	Everything in the Klamath is high!								
Are there likely to be unique opportunities for funding for this technology/measure?	М									
Will this approach create jobs? Of what sort?	М									
Are there identifiable social or cultural impacts from this technology/measure?	M									
How will this technology interact with dam removal, should there be an affirmative										
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate										
Dams?	L									
What is the potential for unintended consequences for this technology/measure?	М									

Summary Criteria - please make entries in green shaded cells only.

Technology/	Measure:	TREATMENT	WETLANDS
-------------	----------	-----------	----------

		Upper Klamath	Link River Dam to	JC Boyle Dam to		For detailed analysis,
Criterion - Use Quantitatve or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Comments?	go to tab
1. Effectiveness	-					
a. Total TN removed for project life (MT)			H (> 100 MT)		No	Obj 1 - Nutrients
b. Total TP removed for project life (MT)			H (> 10 MT)		No	Obj 1 - Nutrients
c. Seasonal DO improvements - indirect or direct?	L-Indirect	L-Indirect	L-Indirect	L-Indirect	No	Obj 2 - Water Quality
d. Seasonal pH improvements - indirect or direct?	L-Indirect	L-Indirect	L-Indirect	L-Indirect	No	Obj 2 - Water Quality
e. Seasonal TSS/turbidity improvements - indirect or direct?	L-Direct	L-Direct	L-Direct	L-Direct	No	Obj 2 - Water Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	n/a-n/a	L-Indirect	L-Indirect	L-Indirect	No	Obj 2 - Water Quality
2. Cost (estimated)						
a. Total cost for project life	H (\$1M to \$100M		H (\$1M to \$100M)	H (\$1M to \$100M)	No	Obj 1 - Nutrients
b. Cost per unit N removal (\$/kg)	L (< \$10/kg)		L (< \$10/kg)	L (<\$10/kg)	Yes	Obj 1 - Nutrients
c. Cost per unit P removal (\$/kg)	L (< \$10/kg)		H (>\$100/kg)	L (<\$10/kg)	Yes	Obj 1 - Nutrients
3. Engineering challenges	M	М	М	М	Yes	Narrative Questions
4. Infrastructure challenges	М	М	М	М	Yes	Narrative Questions
5. Implementation timeframe	М	М	М	М	No	Narrative Questions
6. Energy Use	L	L	L	L	No	Narrative Questions
7. CO2 Loading	L	L	L	L	No	Narrative Questions
8. Compatability/synergy						
a. With other large-scale technologies considered	н	н	н	Н	No	Narrative Questions
c. With ongoing or anticipated restoration measures	М	М	М	Μ	No	Narrative Questions
9. Risk of failure?	L	L	L	L	Yes	Narrative Questions
10. Need for further scientific study?	L	L	L	L	No	Narrative Questions
Comments: It is assumed that improvements to water quality in the Klar	nath Basin will in	nprove support o	of beneficial uses (O	bjective 3), includ	ling support of a	uatic habitat (e.g.,

support for increased sucker recruitment in Upper Klamath Lake). This technology may result in some ET loss from wetlands, which could negatively impact surface water availability through increased consumptive use. ET losses in the wetlands may be smaller than ET losses from the grazed pasture or hayfields they replace.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Techno	logy/Me	asure: TREATMENT WETLANDS									
Criteri	on - Use (Quantitative Rankings	UKI	. Tributaries	Upp	er Klamath Lake	Lin	k River Dam to Keno Dam	JC	Boyle Dam to ron Gate Dam	Line of Reasoning/Notes
											Tribs = Seven Mile, West Canal; Link = Klamath Straits Drain, JC = Refer to Lyons et a (2009). Acreage based on presumed treatment flows (i.e., 250 acres needed for 150
	Wetland area (acres)			200		0		250		250	cfs.)
j,	Project l	ife (yrs)		50				50		50	
sting	ottal osts	Per unit area (\$/acre) °		11300				11300		11300	Unit cost based on Day 1 presentation.
ŝ	C C	Sub-total capital costs	\$	2,260,000	\$	-	\$	2,825,000	\$	2,825,000	
Genera	costs	Per unit area (\$/acre/yr) ^b	\$	425			Ş	425	Ş	425	Unit cost based on Day 1 presentation. Return to check assumptions here. Cost ma be offset by ecosystem services / commodities.
•	N	Annual (\$/yr)	\$	85,000.00	\$	-	\$	106,250.00	\$	106,250.00	
	ö	Sub-total O&M (\$)	\$	4,250,000	\$	-	\$	5,312,500	\$	5,312,500	
	Total cost for project life			6,510,000	\$	-	\$	8,137,500	\$	8,137,500	
	Average flow (cfs)			100				150		150	Design flow here, not necessarily average flow.
	Days operating per year			365				365		365	
der	Mean inflow TN concentration (mg/L)										
5	Mean outflow TN concentration (mg/L)										90% removal
12	Mean in	flow TP concentration (mg/L)									
Ξ.	Mean ou	utflow TP concentration (mg/L)									60% removal
80	Annual 1	TN load removed (MT/yr)						0			
E,	Annual 1	TP load removed (MT/yr)						0			
it B	Total TN	removed for project life (MT)						0			
5	Total TP	removed for project life (MT)						0			
	TN unit I	removal cost (\$/kg)						#DIV/0!			N-removal can be estimated using either 1st or zero order empirical models
	TP unit r	emoval cost (\$/kg)						#DIV/0!			P-removal can be estimated using either 1st or zero order empirical models
	N remov	al rate (mg N/m2/d)						500			Default values here.
Leg .	P remov	al rate (g P/m2/yr)						1.5			
Ξ.	Annual 1	TN load removed (MT/yr)						185			
a e	Annual 1	TP load removed (MT/yr)						2			
Ę ō	Total TN	removed for project life (MT)						9,232			
12	Total TP	removed for project life (MT)						76			
5	TN unit I	removal cost (\$/kg)					\$	1			N-removal can be estimated using either 1st or zero order empirical models
	TP unit r	emoval cost (\$/kg)					\$	107			P-removal can be estimated using either 1st or zero order empirical models

^aIncludes land acquisition and construction⁻ Per-acre capital costs based upon scale-dependent regression equation (Kadlec and Wallace 2009). ^bO&M costs of \$260/acre/yr are the average value from SFWMD (2004). O&M costs of \$800/acre/yr are median value from Kadlec and Wallace (2009). **Comments:**

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: TREATMENT WETLANDS

			Upper Klamath	Link River Dam to	JC Boyle Dam to	
Criterio	n - Use Qualitative or H/M/L Rankings	UKL Tributaries	Lake	Keno Dam	Iron Gate Dam	Line of Reasoning/Notes
	Overall DO improvements	L	L	L	L	
l ja la	Direct or indirect effects?	Indirect	Indirect	Indirect	Indirect	
S S	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall	Keyed to when wetland plants are expected to grow.
ā	Other					
	Overall pH improvements	L	L	L	L	
I	Direct or indirect effects?	Indirect	Indirect	Indirect	Indirect	
_ <u>∩</u>	Season of greatest improvement	Summer/Fall	Summer/Fall	Summer/Fall	Summer/Fall	Keyed to when wetland plants are expected to grow.
	Other					
Ħ	Overall water temperature improvement	n/a	n/a	n/a	n/a	Not enough residence time to register temperature changes.
l a e	Direct or indirect effects?	n/a	n/a	n/a	n/a	
j ĝ ∍	Season of greatest improvement	n/a	n/a	n/a	n/a	
Ĕ	Other					
ā	Overall TSS/turbidity improvements	L	L	L	L	Based on characteristics of water to be treated at specified sites.
불공	Direct or indirect effects?	Direct	Direct	Direct	Direct	
12 -	Season of greatest improvement	Spring	Winter	Winter	Winter	
TS	Other					
5 7	Overall chl-a/algal toxin improvements	n/a	L	L	L	Low, due to project scale.
hdo al	Direct or indirect effects?	n/a	Indirect	Indirect	Indirect	
	Season of greatest improvement	n/a	Summer/Fall	Summer/Fall	Summer/Fall	
5 <u></u>	Other					
Comme	nts:					

Identify WETLANDENT	Please make entries in green shaded cells only.										
Narray Consideration Symmap Criteria Narray Response Are the engineering and design requirements for this techology high, medium, or low and why? M M/L really. Are the infrastructure requirements for this technology generally high (>10 yrs), or low (< 2 yrs) and why? M M/L really. Is the infrastructure requirements for this technology generally high (>10 yrs), or low (< 2 yrs) and why? M M/L really. Is the energy use of this technology high, medium, or low and why? M M Is the energy use of this technology high, medium, or low and why? (New "green") is this M M Is the energy use of this technology with other large-scale technologies being considered high, medium, or low and why? (New "green") is this M M Is the fird of this technology with other large-scale technologies being considered high, medium, or low and why? (New, "fifted") M M Is the fird of this technology high, medium, or low and why? (New, "fifted") M M M Is the risk of inlare with this technology high, medium, or low and why? (New, "fifted") M M M Is the risk of inlare with this technology risk material to an attripated? M M M Considerations M M M M <tr< th=""><th colspan="11">Technology/Measure: TREATMENT WETLANDS</th></tr<>	Technology/Measure: TREATMENT WETLANDS										
Considerations for summary citeria W/L really. Are the engineering and design requirements for this technology high, medium, or low and why? M/L really. Are the infrastructure requirements for this technology generally high (>D (y S), or low (> C (y S) and why? M/L really. Is the infrastructure requirements for this technology generally high (>D (y S), or low (> C (y S) and why? M/L really. Is the entry use of this technology high, medium, or low and why? L Constructure requirements for this technology in the for this technology high, medium, or low and why? Is the CO12 and of this technology high, medium, or low and why? (We ("really. L Constructure requirements for this technology high, medium, or low and why? (He, "really. Is the CO12 and of this technology with other large-scale technologies being considered high, medium, or low and why? (Lee, If the or low of this technology with other large-scale technology lipp overents are medium, or low and why? (Lee, If the or low of this technology with other angene XPU (Inprovements are realized, or just somewhat less than anticipated)? H Constructure requirements for this technology nearer with the technology for the inplementation the provements are realized, or just somewhat less than anticipated? H Constructure requirements for this technology for the implementation the provements are realized, or just somewhat less than anticipated? H Constructure requirements for this technology for the implementation the provements are realized, or just somewhat less than anticipated? H	Narrative Question	H/M/L	Narrative Response								
Are the engineering and design requirements for this technology high, medium, or low and why? M M/L really. Are the infrastructure requirements for this technology agenerally high (>10 yrs), medium? M M/L Is the inplementation timeframe for this technology agenerally high (>10 yrs), medium? M M Is the inplementation timeframe for this technology nigh, medium, or low and why? M L Is the core yue of this technology high, medium, or low and why? (How "green" is this technology measure?) L L Is the fit' of this technology with other large-scale technologies being considered high, medium, or low and why? (Lew, if the money is spent for failure with this technology high, medium, or low and why? (Lew, if the money is spent for failure with this technology high, medium, or low and why? (Lew, if the money is spent for failure with this technology nigh, medium, or low and why? (Lew, if the money is spent for fullementation, does failure mean zero WQ improvemets are realized, or yus townewhal tests than anticipated? M Additional Consideration M L L Additional Consideration M L <td< th=""><th colspan="11">Considerations for Summary Criteria</th></td<>	Considerations for Summary Criteria										
and why? M M Are the infrastructure requirements for this technology high, medium, or low and why? M M/L, really. is the implementation timeframe for this technology generally high (>10 yrs), mod (>2 yrs), or wol (<2 yrs) and why?	Are the engineering and design requirements for this techology high, medium, or low		M/L, really.								
Are the infrastructure requirements for this technology high, medium, or low and why? M/L M/L Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-10 yrs), or low (< 2 yrs) and why?	and why?	м									
Image: Control of the school of the	Are the infrastructure requirements for this technology high, medium, or low and why?		M/L, really.								
Is the implementation timeframe for this technology generally high (>10 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs) and why? Maximum (2 yrs), or low (< 2 yrs		м									
ID (YR), or low (< 2 yr.) and why? M Is the energy use of this technology high, medium, or low and why? (How "green" is this technology/measure?) L Is the "ift of this technology with other large-scale technologies being considered high, medium, or low? and why? (How "green" is this technology with other large-scale technologies being considered high, medium, or low? H Is the "ift of this technology with other large-scale technologies being considered high, medium, or low and why? (Le, if the money is spent for implementation, does failure with this technology ring to anticipated restoration measures high, medium, or low and why? (Le, if the money is spent for implementation, does failure with this technology ring to implementation in the Klamath lass in anticipated? M Is the risk of failure with his technology ring to implementation in the Klamath lass in anticipated? L L Additional Considerations L L L L Does this technology require that a water right be obtained for consumptive or non-consumptive endress multiple water quality problems? Is it a more or M M L Does this technology/measure address multiple water quality problems? Is it a more or M M Refer to Obj 1 Sheet. L Is the rere aduly identifiable legi constraints to this technology/measure? H Everything in the Klamath lasi high! L Are there readily identifiable legi constraints technology/measure? H Everything in the Klamath is h	Is the implementation timeframe for this technology generally high (>10 yrs), medium (2	-									
Is the energy use of this technology high, medium, or low and why? L Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this L Is the 'fit' of this technology with other large-scale technologies being considered high, medium, or low? L Is the 'fit' of this technology with other ongoing or anticipated restoration measures high, medium, or low? M Is the 'fit' of this technology with other ongoing or anticipated restoration measures high, medium, or low? M Is the risk of falure with this technology thigh, medium, or low and why? (Le., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? L Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? L Additional Considerations L L Does this technology require that a water right be obtained for consumptive or non-consumptive use? H Refer to Obj 1 Sheet. Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. E Is this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. E Are there readily identifiable legal constraints on this technology/measure? H E Are there readily identifia	10 yrs), or low (< 2 yrs) and why?	м									
Is the Co2 loading of this technology high, medium, or low and why? (How "green" is this technology/measure?) to the first of this technology with other large-scale technologies being considered high, medium, or low? Is there a hybrid of several options that makes sense? His is the "fit of this technology with other orgonig or anticipated restoration measures high, medium, or low? Is there a hybrid of several options that makes sense? His is the "fit of this technology high, medium, or low and why? (i.e., if the money is specific or implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated? Less than the hoology require that a water right be obtained for consumptive or non- consumptive use? His technology requires that a water right be obtained for consumptive or non- consumptive use? His technology/measure address multiple water quality problems? Is it a more or Less of a global solution? Mis technology/measure? His technology/measure and constitution this technology/measure? His technology/measure and this technology/measure? His technology/measure and this technology/measure? His	Is the energy use of this technology high, medium, or low and why?	L									
technology/measure?) L is the 'fit' of this technology with other arge-scale technologies being considered high, medium, or low? Is there a hybrid of several options that makes sense? H is the 'fit' of this technology with other ongoing or anticipated restoration measures high, medium, or low? M is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? L is the new of further scientific study of this technology prior to implementation in the Klamath basin high, medium, or low and why? L Additional Considerations L L Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure adores multiple water quality problems? Is it a more or less of a global solution? M Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable logic or undruge when way. M Will this approach create jobs? Of what sort? M Will this approach create jobs? Of what sort? M	Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this										
Is the 'fit' of this technology with other large-scale technologies being considered high, medium, or low? Is there a hybrid of several options that makes sense? H is the 'fit' of this technology with other ongoing or anticipated restoration measures high, medium, or low? Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? Is the need for further scientific study of this technology prior to implementation in the Klamath Basin, high, medium, or low and why? Additional Considerations Does this technology require that a water right be obtained for consumptive or non- consumptive use? Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Does this technology/measure a long-term solution or improvement? H Does this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable legal constraints on this technology/measure? M Will this approach create jobs? Of what son? Are there identifiable local constraints of this technology/measure? M Will this approach create jobs? Of what son? Are there identifiable social or cultural impacts from this technology/measure? L What is the potential for unintended consequences for this technology/measure? L Hat be potential for unintended consequences for this technology/measure? L Hat be potential for unintended consequences for this technology/measure? L	technology/measure?)	L									
medium, or low? Is there a hybrid of several options that makes sense? H Is the 'fit' of this technology with other ongoing or anticipated restoration measures high, M medium, or low? M Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? L Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? L Additional Consideration L Does this technology/require that a water right be obtained for consumptive or non-consumptive use? M Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure along-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Will this approach create jobs? Of what sort? M Will this approach create jobs? Of what sort? M Will this approach create jobs? Of what sort? M Will this approach create jobs? Of what sort? M Are there identifiable social or cultural impacts from this technology	Is the 'fit' of this technology with other large-scale technologies being considered high,										
is the fit' of this technology with other ongoing or anticipated restoration measures high, medium, or low? Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? Additional Considerations Does this technology require that a water right be obtained for consumptive or non- consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Does this technology/measure provide an acceptable cost to benefit ratio? Is this technology/measure along-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable legal constraints on this technology/measure? M Will this approach create jobs? Of what sort? Are there readily identifiable social or cultural impacts from this technology/measure? M Will this approach create jobs? Of what sort? Are there readily identifiable social or cultural impacts from this technology/measure? M Will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and iron Gate Dams? L	medium, or low? Is there a hybrid of several options that makes sense?	н									
medium, or low? M Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? L Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? L Additional Considerations L Does this technology require that a water right be obtained for consumptive or non-consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable legal constraints or this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? M Will this approach create jobs? Of what sort? M Will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L	Is the 'fit' of this technology with other ongoing or anticipated restoration measures high	,									
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? Additional Considerations Does this technology require that a water right be obtained for consumptive or non- consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Does this technology/measure provide an acceptable cost to benefit ratio? Is the inter readily identifiable legal constraints on this technology/measure? Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily identifiable social or cultural impacts forn this technology/measure? H Will this expnoor create jobs? Of what sort? H H Will this expnoor create jobs? Of what sort? How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L L L L L L L L L L L L L	medium, or low?	M									
money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? L Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? L Additional Considerations L Does this technology require that a water right be obtained for consumptive or non-consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure along-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? M Will this approach create jobs? Of what sot? M Will this ecology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? M North the potential for unintended consequences for this technology/measure? L	Is the risk of failure with this technology high, medium, or low and why? (i.e., if the										
realized, or just somewhat less than anticipated)? L Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? L Additional Considerations L Does this technology require that a water right be obtained for consumptive or non-consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure along-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable logit or funding for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copo 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	money is spent for implementation, does failure mean zero WQ improvements are										
Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? L L L L L L L L L L L L L L L L L L L	realized, or just somewhat less than anticipated)?	L									
Klamath Basin high, medium, or low and why? L Additional Considerations	Is the need for further scientific study of this technology prior to implementation in the										
Additional Considerations Does this technology require that a water right be obtained for consumptive or non- consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? M Will this approach create jobs? Of what sort? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Klamath Basin high, medium, or low and why?	L									
Does this technology require that a water right be obtained for consumptive or non- consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Will this approach create jobs? Of what sort? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copo 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Additional Considerations										
consumptive use? H Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? M Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copo 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Does this technology require that a water right be obtained for consumptive or non-										
Does this technology/measure address multiple water quality problems? Is it a more or M Iess of a global solution? M Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? M Are there likely to be unique opportunities for funding for this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copo 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	consumptive use?	н									
less of a global solution? M Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Everything in the Klamath is high! Everything in the Klamath is high! Are there leadily identifiable social or cultural impacts for funding for this technology/measure? M Will this approach create jobs? Of what sort? M How will this technology interact with dam removal, should there be an affirmative Everything in the Klamath is high! Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate L Dams? L	Does this technology/measure address multiple water quality problems? Is it a more or										
Does this technology/measure provide an acceptable cost to benefit ratio? Refer to Obj 1 Sheet. Is this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Everything in the Klamath is high! Are there readily identifiable political ramifications for this technology/measure? Are there ikkely to be unique opportunities for funding for this technology/measure? M Will this approach create jobs? Of what sort? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copc0 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure?	less of a global solution?	M									
Is this technology/measure a long-term solution or improvement? H Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Everything in the Klamath is high! Are there likely to be unique opportunities for funding for this technology/measure? M Will this approach create jobs? Of what sort? M M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L Vhat is the potential for unintended consequences for this technology/measure?	Does this technology/measure provide an acceptable cost to benefit ratio?		Refer to Obj 1 Sheet.								
Are there readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Everything in the Klamath is high! Are there likely to be unique opportunities for funding for this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? M M Are there identifiable social or cultural impacts from this technology/measure? L L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copo 1 and 2, and Iron Gate L Dams? L Vhat is the potential for unintended consequences for this technology/measure? L	Is this technology/measure a long-term solution or improvement?	н									
Are there readily identifiable political ramifications for this technology/measure? H Everything in the Klamath is high! Are there likely to be unique opportunities for funding for this technology/measure? M Will this approach create jobs? Of what sort? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Are there readily identifiable legal constraints on this technology/measure?	н									
Are there likely to be unique opportunities for funding for this technology/measure? M Will this approach create jobs? Of what sort? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copc 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Are there readily identifiable political ramifications for this technology/measure?	н	Everything in the Klamath is high!								
Will this approach create jobs? Of what sort? M Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Are there likely to be unique opportunities for funding for this technology/measure?	M									
Are there identifiable social or cultural impacts from this technology/measure? L How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Will this approach create jobs? Of what sort?	M									
How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	Are there identifiable social or cultural impacts from this technology/measure?	L									
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L What is the potential for unintended consequences for this technology/measure? L	How will this technology interact with dam removal, should there be an affirmative										
Dams? L What is the potential for unintended consequences for this technology/measure? L	Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate										
What is the potential for unintended consequences for this technology/measure? L	Dams?	L									
	What is the potential for unintended consequences for this technology/measure?	L									

Summary Criteria - please make entries in green shaded cells only.											
Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS											
Cri	Criterion - Use a Combination of Quantitatve and H/M/L Rankings UKL Tributaries UKL Tributaries Other Potential For analysis, go										
an	d Narrative Descriptions	(per unit)	(per 50 units)	Location	Comments?	tab					
1.	ffectiveness										
a.	Total TN removed for project life (MT)	L (< 10 MT)	H (> 100 MT)	#VALUE!	No	Obj 1 - Nutrients					
b.	Total TP removed for project life (MT)	L (< 1 MT)	H (> 10 MT)	#VALUE!	No	Obj 1 - Nutrients					
c.	Seasonal DO improvements - indirect or direct?	LIndirect	MIndirect		No	Obj 2 - Water Quality					
d.	Seasonal pH improvements - indirect or direct?	LIndirect	LIndirect		No	Obj 2 - Water Quality					
e.	Seasonal TSS/turbidity improvements - indirect or direct?	LDirect	MDirect		No	Obj 2 - Water Quality					
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	LIndirect	MIndirect		No	Obj 2 - Water Quality					
2. Cost (estimated)											
a.	Total cost for project life	L (< \$250K)	H (\$1M to \$100M)		No	Obj 1 - Nutrients					
b.	Cost per unit N removal (\$/kg)	L (< \$10/kg)	L (< \$10/kg)		No	Obj 1 - Nutrients					
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients					
3.1	Engineering challenges	L	L	L	No	Narrative Questions					
4.1	nfrastructure challenges	L	L	L	No	Narrative Questions					
5.1	mplementation timeframe	L	L	L	Yes	Narrative Questions					
6. I	Energy Use	L	L	L	No	Narrative Questions					
7. (CO2 Loading	L	L	L	No	Narrative Questions					
8. (Compatability/synergy										
a.	With other large-scale technologies considered	Н	Н	н	No	Narrative Questions					
b.	With ongoing or anticipated restoration measures	н	Н	н	No	Narrative Questions					
9.1	Risk of failure?	L	L	L	No	Narrative Questions					
10.	Need for further scientific study?	L	L	L	Yes	Narrative Questions					
Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support											
or aquatic natical (e.g., support or increased sucker recruitment in upper klamath Lake). This technology may result in Some E1 loss from Wetlands, Which											
0	courd negativery impact surface water availability through increases o consumptive use. However, since these are small systems, it is not expected that the wearly because will be large. Additionally, at this cole, IT larges in the weater will be the pulse then the form the grand extra at balance will be the set of th										
00	eran losses will be large. Additionally, at this scale, et losses in	the wettanus ma	ay be smaller than c	r losses from the	grazeu pastur	e of haynelus they					
rep	hace.										

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS

Crit	eria - De	velopment of Cost Estimates		Fributaries er unit)	U	JKL Tributaries (per 50 units)	Other Potential	Line of Reasoning/Notes
			UT IT			(,)		Assume 2% of areas treated, per speaker's recommendation. Productive lands contributing to the Klamath Strait Drain appear to be appropriate sites for this technology, but may not be cost- effective. Moreover, it may not work within the
	Wetland	d area (acres)		1		50	Lost River basin	confines of the BOR Klamath Project.
.0	Project	life (yrs)		50		50		
1		Site survey	\$	1,500	\$	75,000		
ti	Capital costs	Diversion box	\$	2,500	\$	125,000		
8		Level control	\$	3,000	\$	150,000		
Ē		Pumps	\$	-	\$	-		
Gener		Earthwork	\$	750	\$	37,500		
		Planting	\$	3,000	\$	150,000		
		Exclusion fencing @ \$1.25 per foot	\$	1,044	\$	52,178		
		Sub-total capital costs	\$	11,794	\$	589,678	\$-	
	5 9	Per unit area (\$/acre/yr)	\$	260	\$	13,000		
	ost O&	Annual (\$/yr)	\$	260	\$	13,000		
	<u> </u>	Sub-total O&M (\$)	\$	13,000	\$	650,000	\$-	
·	Total co	st for project life	\$	24,794	\$	1,239,678	\$-	
	N remo	val rate (mg N/m2/d)		100		100	100	
P A	P remov	/al rate (g P/m2/yr)		1		1	1	
Ğ	Total TN	I removed for project life (MT)		7		369	#VALUE!	
E H	Total TP	removed for project life (MT)		0.2		10.1	#VALUE!	
5	TN unit	removal cost (\$/kg)	\$	3	\$	3	#VALUE!	
	TP unit removal cost (\$/kg)			123	\$	123	#VALUE!	
Con	ments:	The cost estimates in column D are f	for a si	ngle 1-acre	syst	tem. This techno	logy has broader e	effects when many diffuse source wetlands are

comments: The cost estimates in column D are for a single 1-acre system. This technology has broader effects when many diffuse source wetlands a implemented in a single watershed, so cost estimates are provided for a larger number of systems are given in column E.

Objectiv	Objective 2: Improve overall water quality - please make entries in green shaded cells only.									
Technology/Measure: DECENTRALIZED (DIFFUSE) SOURCE TREATMENT SYSTEMS										
Criteria	- Use H/M/L Rankings and Narrative	Tributaries	UKL Tributaries	Other Potential						
Descript	tions	(per unit)	(per 100 units)	Location	Line of Reasoning/Notes					
	Overall DO improvements		м		GENERAL NOTE: Greatest benefits to this technology would be realized if					
Dissolvec Oxygen	Direct or indirect effects?	Indirect	Indirect							
	Season of greatest improvement	Summer/Fall	Summer/Fall							
	Other									
	Overall pH improvements	L	L							
I	Direct or indirect effects?	Indirect	Indirect							
<u>م</u>	Season of greatest improvement	Summer/Fall	Summer/Fall							
	Other									
e e	Overall water temperature improvements	L	L							
iratu	Direct or indirect effects?	Direct	Direct							
du	Season of greatest improvement	Summer/Fall	Summer/Fall							
e	Other									
Įζ	Overall TSS/turbidity improvements	L	м							
libic	Direct or indirect effects?	Direct	Direct							
JT/S	Season of greatest improvement	Spring	Spring							
Ľ,	Other									
ns ns	Overall chl-a/algal toxin improvements	L	м							
phyl	Direct or indirect effects?	Indirect	Indirect							
oro Igal	Season of greatest improvement	Summer/Fall	Summer/Fall							
~ 망	Other									
Comme	nts:									

Please make entries in green shaded cells only.							
Technology/Measure: DFCFNTRA1/ZFD (DIFELISE) SQUIRCE TREATMENT SYSTEMS							
Narrative Question	H/M/L	Narrative Response					
Considerations for Summary Criteria							
Are the engineering and design requirements for this techology high, medium, or low and							
why?	L						
Are the infrastructure requirements for this technology high, medium, or low and why?	L						
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		(per project)					
10 yrs), or low (< 2 yrs) and why?	L						
Is the energy use of this technology high, medium, or low and why?	L						
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this							
technology/measure?)	L						
Is the 'fit' of this technology with other large-scale technologies being considered high,							
medium, or low? Is there a hybrid of several options that makes sense?	н						
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,							
medium, or low?	н						
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money							
is spent for implementation, does failure mean zero WQ improvements are realized, or							
just somewhat less than anticipated)?	L						
Is the need for further scientific study of this technology prior to implementation in the		Essentially LID technology, already well-researched.					
Klamath Basin high, medium, or low and why?	L						
Additional Considerations							
Does this technology require that a water right be obtained for consumptive or non-							
consumptive use?	L						
Does this technology/measure address multiple water quality problems? Is it a more or							
less of a global solution?	м						
Does this technology/measure provide an acceptable cost to benefit ratio?		Refer to Obj 1 Sheet.					
Is this technology/measure a long-term solution or improvement?	н						
Are there readily identifiable legal constraints on this technology/measure?	L						
Are there readily identifiable political ramifications for this technology/measure?	м						
Are there likely to be unique opportunities for funding for this technology/measure?	м						
Will this approach create jobs? Of what sort?	L						
Are there identifiable social or cultural impacts from this technology/measure?		Technology has the potential to create landowner buy-in, education/outreach opportunities, enthusiasm for					
	Н	being part of the solution.					
How will this technology interact with dam removal, should there be an affirmative							
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate							
Dams?	L						
What is the potential for unintended consequences for this technology/measure?	L						

Algal Biomass Removal/Sediment Removal/Water Column Oxidation-Sediment Sequestration (ABR/SR/WCO-SS)

Group 1 - ABR / SR / WCO-SS

Summary Criteria - Please make entries in green shaded cells only.

Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION

	Upper Klamath	Lake Ewauna/Keno	Other		For analysis, go to			
Criterion - Use Quantitatve and H/M/L Rankings	Lake	Reservoir	Location	Comments?	tab			
1. Effectiveness				•				
a. Total TN removed for project life (MT)	H (> 100 MT)			No	Obj 1 - Nutrients			
b. Total TP removed for project life (MT)	M (10 to 100 MT)			No	Obj 1 - Nutrients			
c. Seasonal DO improvements - indirect or direct?	L-Indirect	H-Indirect	ect No		Obj 2 - Water Quality			
d. Seasonal pH improvements - indirect or direct?	L-Indirect	H-Direct		No	Obj 2 - Water Quality			
e. Seasonal TSS/turbidity improvements - indirect or direct?	L-Direct	H-Direct		No	Obj 2 - Water Quality			
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	L-Direct	H-Direct		No	Obj 2 - Water Quality			
2. Cost (estimated)								
a. Total cost for project life	H (\$1M to \$100M)			No	Obj 1 - Nutrients			
b. Cost per unit N removal (\$/kg)	L (< \$10/kg)			No	Obj 1 - Nutrients			
c. Cost per unit P removal (\$/kg)	M (\$10 to \$100/kg)			No	Obj 1 - Nutrients			
3. Engineering challenges				No	Narrative Questions			
4. Infrastructure challenges	н	н	н	Yes	Narrative Questions			
5. Implementation timeframe	L	L	L	Yes	Narrative Questions			
6. Energy Use	L	L	L L		Narrative Questions			
7. CO2 Loading	L	L	L	Yes	Narrative Questions			
8. Compatability/synergy								
 With other large-scale technologies considered 	н	н	н	Yes	Narrative Questions			
b. With ongoing or anticipated restoration measures	н	н	н	No	Narrative Questions			
9. Risk of failure?	L	L	L	Yes	Narrative Questions			
10. Need for further scientific study?	н	н		Yes	Narrative Questions			
Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support of								
aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake). Could help with TMDL								
potential incidental take concerns, but also clear benefit to ESA if	successful so permit	t likely						

Would be useful to have consistent units (moles, metric tons...) Anywhere with pinch point and infrastructure could be candidate location.

Benefit to local economy (jobs) are good.

Viabiliby of use at large scalae is to find a use of biomass (or cheap disposal)

Objective 1: Reduce seasonal concentrations of nutrients - Please make entries in green shaded cells only. Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION

			Upp	er Klamath	Lake Ewauna/Keno		
Crit	erion - U	se Quantitative Rankings		Lake	Reservoir	Other Location	Line of Reasoning/Notes
	Mole C	per mole biomass		120			
	Mole N	per mole biomass		16			
	Mole P	per mole biomass		1			
	Barge fi	ltration capacity (lbs wet weight/day)		200,000			
.0	Barge fi	ltration capacity (lbs dry weight/day)		2,000			
Ē	Project	life (yrs)		10			
E.	N D	Filtration barge (\$)	\$	250,000			
8	ostabit	Off-load vessel (tender) (\$)	\$	50,000			
	0 V	Sub-total capital costs	\$	300,000			
ang l	O&M costs	Fuel for barge and tender (\$/day)	\$	400			
ō		Maintenance for barge and tender (\$/day)	\$	125			
		Personnel (\$/day)	\$	400			
		Annual (\$/yr)	\$	337,625			
		Sub-total O&M (\$)	\$	3,376,250			
	Total co	st for project life	\$	3,676,250			
	Biomas	s removed (Ibs/day)		2,000			
	Carbon	removed (lbs/day)		1,699			
Nal	Nitroge	n removed (Ibs/day)		264			
Ĕ	Phosph	orus removed (Ibs/day)		37			
t R	Total TN	I removed for project life (MT)		438			
E	Total TP	removed for project life (MT)		61			
	TN unit	removal cost (\$/kg)	\$	8			
	TP unit	removal cost (\$/kg)	\$	61			
Con							

Comments

Issues: Assume external load (40%) been addressed.

Not effective toward total load in UKL; disposal of biomass, energy costs.

Opportunities for biomass removal at Link at good to address OM input to Keno Reach

Objective 2: Improve overall water quality - Please make entries in green shaded cells only.

Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION							
Criterio	n - Use Qualitative or H/M/L Rankings	Klamath Lake/Eagle	Reservoir/Link River Dam/Keno Dam	Other	Line of Reasoning/Notes		
D c	Overall DO improvements	L	н		high rating has uncertainty depending on biomass removed (efficency/magnitude of project)		
solve	Direct or indirect effects?	Indirect	Indirect				
õ Bis	Season of greatest improvement		Summer/Fall				
	Other						
	Overall pH improvements	L	н		depends on health of biomass (living and pH swings); high rating has uncertainty depending on biomass removed (efficency/magnitude of project)		
H	Direct or indirect effects?	Indirect	Direct				
	Season of greatest improvement		Summer/Fall				
	Other						
e	Overall water temperature improvements	n/a	n/a				
ratu	Direct or indirect effects?	n/a	n/a				
- du	Season of greatest improvement						
Le Le	Other						
dity	Overall TSS/turbidity improvements	L	н		high rating has uncertainty depending on biomass removed (efficency/magnitude of project)		
dup	Direct or indirect effects?	Direct	Direct				
SS/T	Season of greatest improvement		Summer/Fall				
- F	Other						
ll-a / ins	Overall chl-a/algal toxin improvements	L	н		high rating has uncertainty depending on biomass removed (efficency/magnitude of project)		
to x	Direct or indirect effects?	Direct	Direct				
alga	Season of greatest improvement		Summer/Fall				
ò	Other						
Comments: Potential to return algal toxins and TP to waterbody with dewatering							

Please make entries in green shaded cells only.						
Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION						
Narrative Question	H/M/L	Narrative Response				
Considerations for Summary Criteria						
Are the engineering and design requirements for this techology high, medium, or low						
and why?						
Are the infrastructure requirements for this technology high, medium, or low and why?		need pinch points				
	н					
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2	-	good immediate, short tem tool				
10 yrs), or low (< 2 yrs) and why?	L					
Is the energy use of this technology high, medium, or low and why?	L	need motors etc				
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this	5	removed Caron but burns energy to run motors				
technology/measure?)	L					
Is the 'fit' of this technology with other large-scale technologies being considered high,		esaily compatable with other technologies				
medium, or low? Is there a hybrid of several options that makes sense?	н					
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high	,					
medium, or low?	н					
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		Low at pinch points, but high in open water (UKL)				
money is spent for implementation, does failure mean zero WQ improvements are						
realized, or just somewhat less than anticipated)?	L					
Is the need for further scientific study of this technology prior to implementation in the		magnitude of biomass removal in UKL uncertain.				
Klamath Basin high, medium, or low and why?	н	Water quality after removal uncertain; are toxins, phos, etc released and returned to water?				
Additional Considerations						
Does this technology require that a water right be obtained for consumptive or non-						
consumptive use?	L					
Does this technology/measure address multiple water quality problems? Is it a more or						
less of a global solution?		effect on WQ has uncertainies cause we don't have design information (Magnitude of project and location)				
Does this technology/measure provide an acceptable cost to benefit ratio?						
Is this technology/measure a long-term solution or improvement?	L					
Are there readily identifiable legal constraints on this technology/measure?	н	potential incidental take concerns, but also clear benefit to ESA if successful so permit likely				
Are there readily identifiable political ramifications for this technology/measure?		Depends on whose is paying				
Are there likely to be unique opportunities for funding for this technology/measure?						
Will this approach create jobs? Of what sort?						
Are there identifiable social or cultural impacts from this technology/measure?		If we could turn the algae into a resource				
How will this technology interact with dam removal, should there be an affirmative						
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate						
Dams?	н	Likely source of funding for this technology				
What is the potential for unintended consequences for this technology/measure?						

Summary Criteria - please make entries in green shaded cells only.

Те	chnology/Measure: DREDGING							
Cri	terion - Use a Combination of Quantitatve and H/M/L Rankings and	Upper Klamath	Lake Ewauna/Keno	Other		For detailed analysis,		
Na	rrative Descriptions	Lake	Reservoir	Location	Comments?	go to tab		
1.	Effectiveness							
a.	Total TN removed for project life (MT)	n/a	n/a	n/a	No	Obj 1 - Nutrients		
b.	Total TP removed for project life (MT)	H (> 10 MT)	M (<1 to 10 MT)		No	Obj 1 - Nutrients		
c.	Seasonal DO improvements - indirect or direct?	MIndirect	HIndirect		No	Obj 2 - Water Quality		
d.	Seasonal pH improvements - indirect or direct?	MIndirect	HIndirect		No	Obj 2 - Water Quality		
e.	Seasonal TSS/turbidity improvements - indirect or direct?	MIndirect	HIndirect		Yes	Obj 2 - Water Quality		
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	MIndirect	HIndirect		No	Obj 2 - Water Quality		
2. Cost (estimated)								
a.	Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients		
b.	Cost per unit N removal (\$/kg)	n/a	n/a	n/a	No	Obj 1 - Nutrients		
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients		
3.	Engineering challenges				No	Narrative Questions		
4.1	nfrastructure challenges				No	Narrative Questions		
5.1	mplementation timeframe				No	Narrative Questions		
6.1	Energy Use				No	Narrative Questions		
7. (CO2 Loading				No	Narrative Questions		
8. (Compatability/synergy							
a.	With other large-scale technologies considered				No	Narrative Questions		
c. With ongoing or anticipated restoration measures					No	Narrative Questions		
9.1	Risk of failure?				No	Narrative Questions		
10.	Need for further scientific study?				No	Narrative Questions		
Co	Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses, including support of aquatic habitat							

(e.g., support for increased sucker recruitment in Upper Klamath Lake).

Want more data from Howard Bay to see if it should also be target area; Caladonia and Wokus Bay areas have Ag input to southern UKL.

Nancy Simon had maps of UKL showing contour maps of TP/Carbon/TN loads in sediments to inform discussion, but need more info for south UKL.

Concern with nesting habitat - would be further out into waterbody.

Goose Bay is Willimason delta - access available; high return on effort.

Shoal Water Bay and Ball Bay - access to landfill for dredged material.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: DREDGING

_			_					
			Up	per Klamath	Lake Ewauna/Keno	•		
Crit	eria - De	velopment of Cost Estimates		Lake	Reservoir		Other Location	Line of Reasoning/Notes
	Dredgin	g area (acres)		57,328				
	Dredgin	g depth (ft)		0.33				
ę	Dredgin	g volume (yd3)		30,521,427	98,00	0		
5	Depth o	f highest P concentration in sediments (cm)		10	1	0		
Ę.	Assume	d concentration of P in sediments (mg/g dry weight)		0.6	0.0	6		From Simon et al. (2009)
General Cos	Capital & O&M costs	Hydraulic dredging unit cost (\$/yd3)*	\$	15	\$ 1	5	ć -	
	Total co	est for project life	Ś	457.821.408	\$ 1,470.00	0	\$ -	
_	Total TI	V removed (MT)		-	•	-	•	
0Va	Total Ti	P removed (MT)**		1,392	4	.5		
Ĕ	Total TN	I removed for project life (kg)		-	-			
Å,	Total TP	removed for project life (kg)**		1,392,000	4,47	0	-	
Ë.	TN unit	removal cost (\$/kg)		-	-			
1	TP unit	removal cost (\$/kg)**	\$	329	\$ 32	9	#DIV/0!	
* Di	sposal co	ost not captured in the estimate of cost per unit removal				_		

Disposal cost not captured in the estimate of cost per unit removal.

** Estimates assume the same P-content of Keno Reservoir sediments as Upper Klamath Lake.

Comments:

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: DREDGING							
- Use H/M/L Rankings and Narrative	Lake, selected	Lake Ewauna/Keno					
Descriptions		Reservoir	Other Location	Line of Reasoning/Notes			
Overall DO improvements	м	н		target high nutrient areas and expect localized biomass decrease			
Direct or indirect effects?	Indirect	Indirect					
Season of greatest improvement	Summer/Fall	Summer/Fall					
Other							
Overall pH improvements	М	н					
Direct or indirect effects?	Indirect	Indirect					
Season of greatest improvement	Summer/Fall	Summer/Fall					
Other							
Overall water temperature improvements							
Direct or indirect effects?							
Season of greatest improvement							
Other							
Overall TSS/turbidity improvements	М	Н		This is an assessment of long-term TSS/turbidity from decreased algae blooms			
Direct or indirect effects?	Indirect	Indirect		rather than an assessment of short-term impacts due to dredging.			
Season of greatest improvement	Summer/Fall	Summer/Fall					
Other							
Overall chl-a/algal toxin improvements	М	Н					
Direct or indirect effects?	Indirect	Indirect					
Season of greatest improvement	Summer/Fall	Summer/Fall					
Other							
	Jogy/Measure: DREDGING Use H/M/L Rankings and Narrative tions Overall DO improvements Direct or indirect effects? Season of greatest improvement Other Overall pH improvements Direct or indirect effects? Season of greatest improvement Other Overall water temperature improvements Direct or indirect effects? Season of greatest improvement Other Overall TSS/turbidity improvements Direct or indirect effects? Season of greatest improvement Other Overall TSS/turbidity improvements Direct or indirect effects? Season of greatest improvement Other Overall Ch-a/algal toxin improvements Direct or indirect effects? Season of greatest improvement Other	Ogg/Measure: DREDGING - Use H/M/L Rankings and Narrative tions Lake, selected locations Overall DO improvements M Direct or indirect effects? Indirect Season of greatest improvement Summer/Fall Other Ourall pH improvements M Direct or indirect effects? Indirect Season of greatest improvement Summer/Fall Other Overall pH improvements M Direct or indirect effects? Indirect Season of greatest improvement Summer/Fall Other Overall water temperature improvements Direct or indirect effects? Season of greatest improvement Other Overall TSS/turbidity improvements Other Overall TSS/turbidity improvement Other Overall full-a/algal toxin improvements Other Overall full-a/algal toxin improvements Other Overall full-a/algal toxin improvements	Jogy/Measure: DREDGING Use H/M/L Rankings and Narrative tions Lake, selected locations Lake Ewauna/Keno Reservoir Overall DO improvements M H Direct or indirect effects? Indirect Indirect Season of greatest improvement Summer/Fall Summer/Fall Other Overall pH improvements M H Direct or indirect effects? Indirect Indirect Season of greatest improvement Summer/Fall Summer/Fall Other Other Other Overall water temperature improvements Direct or indirect effects? Season of greatest improvement Other Overall TSS/turbidity improvements M H Direct or indirect effects? Indirect Indirect Season of greatest improvement Summer/Fall Summer/Fall Other	Jogy/Measure: DREDGING - Use H/M/L Rankings and Narrative tions Lake, selected locations Lake Ewauna/Keno Reservoir Other Location Overall DO improvements M H Direct or indirect effects? Indirect Indirect Season of greatest improvement Summer/Fall Summer/Fall Other			

Comments:

Assumes localized dredging of UKL, not all of lake.

Suggest having pilot areas; chosen with fisheries people involved to assess effects/benefits.

Degree of biomass removal with targeted dredging is uncertain, especially how it shows with rotational dredging approach.

Slow process - so suggest doing rotatin program - do part of habitat each year, leaving other habitat areas unimpacted while doind dredging in pilot area.

Mechanics of doing dredging - pick as confined area as possible to do pilot study in west side embayment to understand hydrodynamics, etc

Summary Criteria - please make entries in green shaded cells only.

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION

Upper Klamath Lake: Lake Ewauna/Keno Copco 1 and Iron For detailed an go to tab. Narrative Descriptions I.Effectiveness Total TN removed for project life (MT) n/a n/a n/a Obj 1 - Nutrients: b. Total TN removed for project life (MT) H (> 10 MT) H (> 10 MT) No Obj 1 - Nutrients:	i <mark>nalysis,</mark>)
Criterion - Use a Combination of Quantitatve and H/M/L Rankings and Narrative Descriptions Whole lake alum treatment only Reservoir: alum injection (includes oxygenation) Copco 1 and Iron Gate Reservoirs For detailed an go to tab 1. Effectiveness	inalysis,) its
Narrative Descriptions treatment only (includes oxygenation) Gate Reservoirs Comments? go to tab. 1. Effectiveness . Total TN removed for project life (MT) n/a n/a n/a Obj 1 - Nutrient: b. Total TP removed for project life (MT) H (>10 MT) H (>10 MT) No Obj 1 - Nutrient: c. Seasonal DO improvements - indirect or direct? Hindirect Hindirect Ves Obj 2- Water Out	0 1ts
I. Effectiveness n/a n/a n/a Obj 1 - Nutrient a. Total TN removed for project life (MT) n/a n/a n/a Obj 1 - Nutrient b. Total TP removed for project life (MT) H (>10 MT) H (>10 MT) No Obj 1 - Nutrient c. Seasonal DO improvements - indirect or direct? Hindirect Hindirect Ves Obj 2 - Water Out	its
a. Total TN removed for project life (MT) n/a n/a n/a Obj 1 - Nutrient b. Total TP removed for project life (MT) H (>10 MT) H (>10 MT) No Obj 1 - Nutrient c. Seasonal DO improvements - indirect or direct? Hindirect Hindirect Yes Obj 2 - Water Obj	nts
b. Total TP removed for project life (MT) H (>10 MT) H (>10 MT) No Obj 1 - Nutrient	
c Seasonal DO improvements - indirect or direct? Hindirect Hindirect Yes Obi 2 - Water Ou	its
a beablar bo improvemento indirector anecti	Quality
d. Seasonal pH improvements - indirect or direct? HDirect HDirect Obj 2 - Water Qu	Quality
e. Seasonal TSS/turbidity improvements - indirect or direct? HDirect HDirect O Obj 2 - Water Qu	Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct? HDirect HDirect Obj 2 - Water Qu	Quality
2. Cost (estimated)	
a. Total cost for project life VH (>\$100M) H (\$1M to \$100M) No Obj 1 - Nutrient	its
b. Cost per unit N removal (\$/kg) n/a n/a Na Obj 1 - Nutrient:	its
c. Cost per unit P removal (\$/kg) H (>\$100/kg) M (\$10 to \$100/kg) No Obj 1 - Nutrient	its
3. Engineering challenges L L L Yes Narrative Quest	stions
4. Infrastructure challenges M M Yes Narrative Quest	stions
5. Implementation timeframe L L L No Narrative Quest	stions
6. Energy Use M M M Yes Narrative Quest	stions
7. CO2 Loading No Narrative Quest	stions
8. Compatability/synergy	
a. With other large-scale technologies considered M M M Yes Narrative Quest	stions
c. With ongoing or anticipated restoration measures H H H No Narrative Quest	stions
9. Risk of failure? L L L Yes Narrative Quest	stions
10. Need for further scientific study? M M Yes Narrative Quest	stions

Comments: (is cell has alot more content than can be seen in view!!!!) Scroll down!

Oxygenation alone is doable in Keno Reservoir. For UKL, not good solution cause scale issue. Also capture of phosphaste relative to iron oxides. Oxygen alone not good apporach due to limited iron for phos sequestration; could be sufficient for ESA habitat.

Alum - Call for more information, and need for furhter understanding of technology; impacted ability to address technology potential. Need for more informtion on chemistry, scaling up to size of UKL. Pilot studies needed to determine dosage, and impact of high pH in watercolumn versus in pore water. Uncertainites relate to alum use (could change geochemistry for sediments, replace function of iron in trapping phos, humic and other ligand concentrations, uncertain),

There are other options we need to explore - PhosLock, BioChar, etc. Could we use BioChar as Ag soil amanedments to reduce runoff of nutrients.

Could genereating BioChar be done to produce electricity in basin and amend BioChar with algal biomass of soil amanedment.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION								
		Upper Klamath Lake: whole lake alum	Lake Ewauna/Keno Reservoir: alum injection (includes oxygenation)	Copco 1 and Iron	Line of Reasoning/Notes			
Circo	Lake area (acres)		66000	n/a	Gute neservoirs	Line of neusoning/notes		
	Treated flow (MGD) Alum dose required for lake (g/m2)		n/a	788				
			80	n/a				
	Alum do	se required for injection (mg/L)	n/a	1.65				
	Daily are	ea covered (acres/day)	150	n/a				
	Project	ife (years)	8	20		Project life for Upper Klamath Lake is estimated to be 8 to 15 years.		
2	s.	Alum Storage Facility (\$)	incl in mobilization of	\$ 150,000				
ting Inf	ost	Mobilization (\$)	\$ 2,250,000	\$ 741,772		Assume 8% of total project cost.		
	Capital C	Injection/aeration equipment	n/a	\$ 4,000,000				
S.		Facilities building	n/a	\$ 300,000				
2		Sub-total Capital (\$)	\$ 2,250,000	\$ 5,191,772	\$ -	Alum injection costs are pro-rated over 20 years.		
ene		Alum cost (\$/gal)	\$ 1.20	\$ 1.00				
Ū	s	Sodium aluminate buffer cost (\$/gal)	\$ 2.20	\$ 2.00				
	1 Cost	Injection equipment maintenance and replacement	n/a	Ś 300		Alum injection assumes a 20 year life on equipment.		
	N80	Personnel (\$/day)	n/a	\$ 100		· · · · · · · · · · · · · · · · · · ·		
	0	Annual (\$/yr)	n/a	\$ 4,080,000				
		Sub-Total O&M (\$)	\$ 177,750,000	\$ 81,600,000				
	Total co	st for project life	\$ 180,000,000	\$ 85,680,000				
_	Days op	erating per year	200	200				
ova	Annual [®]	۲P load removed (MT/yr)	70	89				
E	Total TP	removed for project life (MT)	560	1,771				
it R	Total TP	removed for project life (kg) (over 10 year for UKL						
5	whole la	ke and 20 year operation alum injection)	699,791	1,770,909				
	TP unit r	emoval cost (\$/kg)	\$ 257	\$ 48				
Com	Comments:							

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION

Criteria Descript	- Use H/M/L Rankings and Narrative	Lake: whole lake alum treatment only	Lake Ewauna/Keno Reservoir: alum injection (includes oxygenation)	sequestiration above UKL (in water or soils)	Line of Reasoning/Notes
	Overall DO improvements	н	H		
gen	Direct or indirect effects?	Indirect	Indirect		reduces biomass
SSO DXV	Season of greatest improvement	Summer/Fall	Summer/Fall		
ā	Other				
	Overall pH improvements	Н	Н		
т	Direct or indirect effects?	Direct	Direct		cause of reduced photosynthesis (and immediately buffer input)
đ	Season of greatest improvement	Summer/Fall	Summer/Fall		
	Other				
'n	Overall water temperature improvements	n/a	n/a		
erat	Direct or indirect effects?	n/a	n/a		
Ê	Season of greatest improvement				
Te	Other				
q	Overall TSS/turbidity improvements	Н	н		
d y	Direct or indirect effects?	Direct	Direct		
51 t	Season of greatest improvement	Summer/Fall	Summer/Fall		
TS	Other				
- [_]	Overall chl-a/algal toxin improvements	Н	Н		
oph alga cins	Direct or indirect effects?	Direct	Direct		
lord a/a tox	Season of greatest improvement	Summer/Fall	Summer/Fall		
చ ి	Other				

Comments: Critical uncertainty is required biomass reduction, and agreement on what is target (Phosphorus?) and how much of a reduction is needed.

John Holz suggestions- Lake treatment in combination with installing aeration alum injection system. Floculated produce takes alage to bottom and binds with inorganic Phos on bottom; algae convert org. phos. to inorganic phos which is then bound by floculant. Concern is with total cost for fix requiring O&M every 10 yrs.

Treatement of entire lake is not needed; need better understanding of goal and how to use technology.

Oxygenation in Keno is short term fix, but also addressed BOD, pH and down river nutrient loads.

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low		Low for lake, moderate for alum injection
and why?	L	
Are the infrastructure requirements for this technology high, medium, or low and why?		for injection
	м	
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-	-	
10 yrs), or low (< 2 yrs) and why?	L	
Is the energy use of this technology high, medium, or low and why?	м	transport of product to lake high, but boat application low
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		
technology/measure?)		
Is the 'fit' of this technology with other large-scale technologies being considered high,		use with aeration etc.or as kick-start to treatment wetland effectivenes
medium, or low? Is there a hybrid of several options that makes sense?	М	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		
medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		Proven technoligy, just need to do it right.
money is spent for implementation, does failure mean zero WQ improvements are		
realized, or just somewhat less than anticipated)?	L	
Is the need for further scientific study of this technology prior to implementation in the		Need agreement on magnitude of biomass reduction. Have to do pilot studies and dose calculations
Klamath Basin high, medium, or low and why?	М	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		
consumptive use?	L	
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?	н	
Does this technology/measure provide an acceptable cost to benefit ratio?		
Is this technology/measure a long-term solution or improvement?	М	10 yrs, but have to redo. Need to interact with external load control for long term fix.
Are there readily identifiable legal constraints on this technology/measure?		
Are there readily identifiable political ramifications for this technology/measure?	н	concern with stakeholders buy-in.
Are there likely to be unique opportunities for funding for this technology/measure?		
Will this approach create jobs? Of what sort?		Size of alum order could result in mfgr builiding plant in Kfalls or Yreka - jobs etc. Large potentalila benefits to
	М	improvement as related to clean water.
Are there identifiable social or cultural impacts from this technology/measure?		
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?	н	
What is the potential for unintended consequences for this technology/measure?	L	Overdose inhances macrophyte growth - unlikely to so fully address TP control since open system

Summary Criteria - Please make entries in green shaded cells only.

Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION							
	Upper Klamath	Lake Ewauna/Keno	Other		For analysis, go to		
Criterion - Use Quantitatve and H/M/L Rankings	Lake	Reservoir	Location	Comments?	tab		
1. Effectiveness							
a. Total TN removed for project life (MT)	H (>100 MT)			No	Obj 1 - Nutrients		
b. Total TP removed for project life (MT)	M (10 to 100 MT)			No	Obj 1 - Nutrients		
c. Seasonal DO improvements - indirect or direct?	L-Indirect			No	Obj 2 - Water Quality		
d. Seasonal pH improvements - indirect or direct?	L-Indirect			No	Obj 2 - Water Quality		
e. Seasonal TSS/turbidity improvements - indirect or direct?	L-Direct			No	Obj 2 - Water Quality		
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	L-Direct			No	Obj 2 - Water Quality		
2. Cost (estimated)	•						
a. Total cost for project life	H (\$1M to \$100M)			No	Obj 1 - Nutrients		
b. Cost per unit N removal (\$/kg)	L (< \$10/kg)			No	Obj 1 - Nutrients		
c. Cost per unit P removal (\$/kg)	M (\$10 to \$100/kg)			No	Obj 1 - Nutrients		
3. Engineering challenges	L	L	L	Yes	Narrative Questions		
4. Infrastructure challenges				Yes	Narrative Questions		
5. Implementation timeframe	M	М	М	No	Narrative Questions		
6. Energy Use	н	Н	н	Yes	Narrative Questions		
7. CO2 Loading	м	М	м	Yes	Narrative Questions		
8. Compatability/synergy							
a. With other large-scale technologies considered	н	Н	н	Yes	Narrative Questions		
b. With ongoing or anticipated restoration measures	н	Н	н	Yes	Narrative Questions		
9. Risk of failure?	н	Н	н	Yes	Narrative Questions		
10. Need for further scientific study?	Н	Н		Yes	Narrative Questions		
Comments: It is assumed that improvements to water quality in the	ne Klamath Basin wi	Il improve support o	f beneficial us	ses (Objective	3), including support of		

aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake).

Objective 1: Reduce seasonal concentrations of nutrients - Please make entries in green shaded cells only. Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION

Tec									
			Upper Klama	th Lake Ewauna/Keno					
Crit	erion - U	se Quantitative Rankings	Lake	Reservoir	Other Location	Line of Reasoning/Notes			
	Mole C	per mole biomass	1	20					
	Mole N	per mole biomass		16					
	Mole P	per mole biomass		1					
	Barge fi	ltration capacity (lbs wet weight/day)	200,0	00					
0	Barge fi	ltration capacity (lbs dry weight/day)	2,0	00 100,000					
Ξ	Project	life (yrs)		10					
ti di	v a	Filtration barge (\$)	\$ 250,0	00					
50	ost	Off-load vessel (tender) (\$)	\$ 50,0	00					
Ē	ÖÖ	Sub-total capital costs	\$ 300,0	00 16,000,000					
ane l	A costs	Fuel for barge and tender (\$/day)	\$ 4	00					
ŏ		Maintenance for barge and tender (\$/day)	\$ 1	25					
		Personnel (\$/day)	\$ 4	00					
	081	Annual (\$/yr)	\$ 337,6	25					
		Sub-total O&M (\$)	\$ 3,376,2	50					
	Total co	st for project life	\$ 3,676,2	50					
	Biomas	s removed (Ibs/day)	2,0	00					
	Carbon	removed (Ibs/day)	1,6	99					
2 al	Nitroge	n removed (lbs/day)	2	54					
Ĕ	Phosph	orus removed (lbs/day)		37					
t R	Total TN	I removed for project life (MT)	4	38					
- L L	Total TP	removed for project life (MT)		51					
	TN unit	removal cost (\$/kg)	\$	8					
	TP unit	removal cost (\$/kg)	\$	51					
Con	ments:	29 barges needed to reduce the P to the TMD	l level. In colu	umn E we are basing the	numbers based on	Land Filtration, not the barge filtration, Land			

filtration is more risk for fish because of the narrow flows than with the barge filtration.

Objectiv	Objective 2: Improve overall water quality - Please make entries in green shaded cells only.								
Technol	Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION								
Criterio	n - Use Qualitative or H/M/L Rankings	Upper Klamath Lake	Lake Ewauna/Keno Reservoir	Other Location	Line of Reasoning/Notes				
	Overall DO improvements	L			Due to the number of barges needed to employ				
gen	Direct or indirect effects?	Indirect							
0 xy	Season of greatest improvement	Spring			We would also inculde summer				
	Other								
т	Overall pH improvements	L							
	Direct or indirect effects?	Indirect							
۵.	Season of greatest improvement	Spring			Same				
	Other								
e	Overall water temperature improvements	n/a							
ratu	Direct or indirect effects?	n/a							
ube	Season of greatest improvement	None							
۳ ۲	Other								
Ę	Overall TSS/turbidity improvements	L							
rbid	Direct or indirect effects?	Direct							
Ľ,	Season of greatest improvement	Spring			Same				
Ĕ	Other								
e s	Overall chl-a/algal toxin improvements	L							
bhyl	Direct or indirect effects?	Direct							
oroj Igal i	Season of greatest improvement	Spring			Same				
ਤ <u>~</u>	Other								
Comments: These answers are dependent on how many barges are employed.									

Please make entries in green shaded cells only.								
Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION								
Narrative Question	H/M/L	Narrative Response						
Considerations for Summary Criteria		•						
Are the engineering and design requirements for this techology high, medium, or low and		The technologies are already exsisting for barge but would require engineering for the land system						
why?	L							
Are the infrastructure requirements for this technology high, medium, or low and why?		L: barge; H: land						
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-								
10 yrs), or low (< 2 yrs) and why?	м							
Is the energy use of this technology high, medium, or low and why?	н	Mechanical needs						
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		Burning gas; decay of algea; could compost or create biofuel; will depend on scale						
technology/measure?)	м							
Is the 'fit' of this technology with other large-scale technologies being considered high,		Will work with other technologies (wetlands); not antagnistic with other technologies						
medium, or low? Is there a hybrid of several options that makes sense?	н							
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		RH Contraction of the second se						
medium, or low?	н							
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money		Little confidence that all the algea could be harvested with barges. Risk for land system in M, more potential						
is spent for implementation, does failure mean zero WQ improvements are realized, or		for downstream benefits.						
just somewhat less than anticipated)?	н							
Is the need for further scientific study of this technology prior to implementation in the		For both systems						
Klamath Basin high, medium, or low and why?	н							
Additional Considerations								
Does this technology require that a water right be obtained for consumptive or non-		May need for land system						
consumptive use?	L							
Does this technology/measure address multiple water quality problems? Is it a more or								
less of a global solution?	L	The barges Only adressing the lake						
Does this technology/measure provide an acceptable cost to benefit ratio?	L	~4 million per barge; need 29 barges; need cost info for land system						
Is this technology/measure a long-term solution or improvement?	L							
Are there readily identifiable legal constraints on this technology/measure?	L							
Are there readily identifiable political ramifications for this technology/measure?	L	Barges already in place may be issue; may have positive effect						
Are there likely to be unique opportunities for funding for this technology/measure?	м	May have private/publuc share						
Will this approach create jobs? Of what sort?	н							
Are there identifiable social or cultural impacts from this technology/measure?	L							
How will this technology interact with dam removal, should there be an affirmative								
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate								
Dams?	L	Just UKL; undefined						
What is the potential for unintended consequences for this technology/measure?		Shift to microsytices; potential on suckers; changing the food web; benthic make-up						

Summary Criteria - please make entries in green shaded cells only.

Те	chnology/Measure: DREDGING									
Cri	terion - Use a Combination of Quantitatve and H/M/L Rankings and	Upper Klamath	Lake Ewauna/Keno	Other		For detailed analysis,				
Na	rrative Descriptions	Lake	Reservoir	Location	Comments?	go to tab				
1.	ffectiveness									
a.	Total TN removed for project life (MT)	n/a	n/a	n/a	No	Obj 1 - Nutrients				
b.	Total TP removed for project life (MT)	H (> 10 MT)	M (<1 to 10 MT)		No	Obj 1 - Nutrients				
c.	Seasonal DO improvements - indirect or direct?	HIndirect			No	Obj 2 - Water Quality				
d.	Seasonal pH improvements - indirect or direct?	HIndirect			No	Obj 2 - Water Quality				
e.	Seasonal TSS/turbidity improvements - indirect or direct?	HIndirect			Yes	Obj 2 - Water Quality				
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	HIndirect			No	Obj 2 - Water Quality				
2.0	Cost (estimated)									
a.	Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients				
b.	Cost per unit N removal (\$/kg)	n/a	n/a	n/a	No	Obj 1 - Nutrients				
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients				
3.	Engineering challenges	Н	Н	н	No	Narrative Questions				
4.1	nfrastructure challenges	Н	н	н	No	Narrative Questions				
5.1	mplementation timeframe	м	М	м	No	Narrative Questions				
6.	Energy Use	н	н	н	No	Narrative Questions				
7. (CO2 Loading	н	н	н	Yes	Narrative Questions				
8. (Compatability/synergy				•					
a.	With other large-scale technologies considered	Н	Н	н	Yes	Narrative Questions				
c.	With ongoing or anticipated restoration measures	Н	Н	н	No	Narrative Questions				
9. Risk of failure?		Н	Н	н	Yes	Narrative Questions				
10. Need for further scientific study? H H H H Yes Narrative Questi						Narrative Questions				
Со	Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses, including support of aquatic habitat									

(e.g., support for increased sucker recruitment in Upper Klamath Lake).

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Tec	hnology/	Measure: DREDGING							
			Up	per Klamath	l	Lake Ewauna/Keno			
Crit	eria - De	velopment of Cost Estimates		Lake		Reservoir	0	Other Location	Line of Reasoning/Notes
	Dredgin	g area (acres)		57,328					
	Dredgin	g depth (ft)		0.33					
ę	Dredgin	g volume (yd3)		30,521,427		98,000			
50	Depth o	f highest P concentration in sediments (cm)		10		10			
l it	Assume	d concentration of P in sediments (mg/g dry weight)		0.6		0.6			From Simon et al. (2009)
neral Co	tal & costs	Hydraulic dredging unit cost (\$/yd3)*	\$	15	\$	15			
Gen		Hydraulic dredging cost	\$	457,821,408	Ş	1,470,000	\$	-	
-	Total co		>	457,821,408	>	1,470,000	>	-	
5	Total TN	I removed (MT)		-	-	-			
õ	Total TP	removed (MT)**		1,392		4.5			
Ea	Total TN	I removed for project life (kg)		-		-			
E H	Total TP	removed for project life (kg)**		1,392,000		4,470		-	
5	TN unit	removal cost (\$/kg)		-		-			
	TP unit removal cost (\$/kg)**			329	\$	329		#DIV/0!	
* Di	* Disposal cost not captured in the estimate of cost per unit removal.								

** Estimates assume the same P-content of Keno Reservoir sediments as Upper Klamath Lake.

Comments: Using the assumed acres but cost could go down by using targeted dredging. Assuming dredging would take 5 years to do the whole lake. We question the cost of disposal of the sediment; may be contaminated (arsenic).

Objective 2: Improve overall water quality - please make entries in green shaded cells only.									
Techno	ogy/Measure: DREDGING								
Criteria	- Use H/M/L Rankings and Narrative	Upper Klamath	Lake Ewauna/Keno						
Descriptions		Lake	Reservoir	Other Location	Line of Reasoning/Notes				
					Less P that can move to the water column; without removing the external				
a c	Overall DO improvements	н			loading the logentivity is questionable				
vlos Vigi	Direct or indirect effects?	Indirect							
°≣ ô	Season of greatest improvement	Summer/Fall							
1	Other								
I	Overall pH improvements	Н							
	Direct or indirect effects?	Indirect							
٩	Season of greatest improvement	Summer/Fall							
	Other								
b.	Overall water temperature improvements	N/a							
erat	Direct or indirect effects?	n/a							
Ē	Season of greatest improvement	n/a							
- Ho	Other								
ġ	Overall TSS/turbidity improvements	Н			This is an assessment of long-term TSS/turbidity from decreased algae blooms				
s c	Direct or indirect effects?	Indirect			rather than an assessment of short-term impacts due to dredging.				
۲۶ t	Season of greatest improvement	Summer/Fall							
Ľ.	Other								
<u></u>	Overall chl-a/algal toxin improvements	Н							
oph alga	Direct or indirect effects?	Indirect							
	Season of greatest improvement	Summer/Fall							
τ.	Other								
Comme	nts: This rankings are under the assumption t	that external loadi	ng is being addressed						

Please make entries in green shaded cells only.		
Technology/Measure: DREDGING		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria	_	
Are the engineering and design requirements for this techology high, medium, or low		
and why?	н	
Are the infrastructure requirements for this technology high, medium, or low and why?	н	
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2		
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	н	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		Not very green
technology/measure?)	н	
Is the 'fit' of this technology with other large-scale technologies being considered high,		Sediment could be used in wetalnds and othe applications
medium, or low? Is there a hybrid of several options that makes sense?	н	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,	,	
medium, or low?	н	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		The cost is high and the effect may not be big and this process will take a long time; loading from other
money is spent for implementation, does failure mean zero WQ improvements are		sources that will reestablish the sediment
realized, or just somewhat less than anticipated)?	н	
Is the need for further scientific study of this technology prior to implementation in the		Effect on species; dredge fast enough that external loading is not an issue. Would be best after upstream
Klamath Basin high, medium, or low and why?	Н	technologies in place.
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		
consumptive use?	L	
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?	н	Not a global solution but adress multiple WQ parameters
Does this technology/measure provide an acceptable cost to benefit ratio?	L	
Is this technology/measure a long-term solution or improvement?	L	
Are there readily identifiable legal constraints on this technology/measure?	М	
Are there readily identifiable political ramifications for this technology/measure?	н	Endangered species
Are there likely to be unique opportunities for funding for this technology/measure?	L	
Will this approach create jobs? Of what sort?	н	Short term
Are there identifiable social or cultural impacts from this technology/measure?	L	
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?	L	
What is the potential for unintended consequences for this technology/measure?	Н	Invertabite species; arsenic; endangered species

Su	Summary Criteria - please make entries in green shaded cells only.									
Te	Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION									
Cri Na	terion - Use a Combination of Quantitatve and H/M/L Rankings and rrative Descriptions	Upper Klamath Lake: whole lake alum treatment only	Lake Ewauna/Keno Reservoir: alum injection (includes oxygenation)	Copco 1 and Iron Gate Reservoirs	Comments?	For detailed analysis, go to tab				
1.1	Effectiveness					-				
a.	Total TN removed for project life (MT)	n/a	n/a	n/a	n/a	Obj 1 - Nutrients				
b.	Total TP removed for project life (MT)	H (> 10 MT)	H (> 10 MT)		No	Obj 1 - Nutrients				
c.	Seasonal DO improvements - indirect or direct?	HIndirect	MDirect		No	Obj 2 - Water Quality				
d.	Seasonal pH improvements - indirect or direct?	HIndirect	MIndirect		No	Obj 2 - Water Quality				
e.	Seasonal TSS/turbidity improvements - indirect or direct?	MIndirect	HDirect		No	Obj 2 - Water Quality				
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	HIndirect	MDirect		No	Obj 2 - Water Quality				
2. (Cost (estimated)									
a.	Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients				
b.	Cost per unit N removal (\$/kg)	n/a	n/a	n/a	n/a	Obj 1 - Nutrients				
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	M (\$10 to \$100/kg)		No	Obj 1 - Nutrients				
3.1	Engineering challenges	Н	Н	Н	No	Narrative Questions				
4. I	nfrastructure challenges	Н	Н	Н	Yes	Narrative Questions				
5.1	mplementation timeframe	М	М	М	No	Narrative Questions				
6. I	Energy Use	Н	Н	Н	No	Narrative Questions				
7. (CO2 Loading	Н	Н	Н	Yes	Narrative Questions				
8. (Compatability/synergy									
a.	With other large-scale technologies considered	Н	Н	Н	No	Narrative Questions				
c.	With ongoing or anticipated restoration measures	Н	Н	Н	No	Narrative Questions				
9.1	Risk of failure?	М	М	М	Yes	Narrative Questions				
10.	Need for further scientific study?	Н	Н	Н	No	Narrative Questions				
Co	mments: It is assumed that improvements to water quality in the Klan	nath Basin will improve	support of beneficial uses	including support	of aquatic hab	itat (e.g., support for				

Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses, including support of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake).

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION

						-
			Upper Klamath Lake:	Lake Ewauna/Keno		
			whole lake alum	Reservoir: alum injection	Copco 1 and Iron	
Crit	eria - Dev	velopment of Cost Estimates	treatment only	(includes oxygenation)	Gate Reservoirs	Line of Reasoning/Notes
	Lake are	a (acres)	66000	n/a		
	Treated	flow (MGD)	n/a	788		
	Alum do	se required for lake (g/m2)	80	n/a		
	Alum do	se required for injection (mg/L)	n/a	1.65		
	Daily are	ea covered (acres/day)	150	n/a		
	Project	ife (years)	8	20		Project life for Upper Klamath Lake is estimated to be 8 to 15 years.
ę	N	Alum Storage Facility (\$)	incl in mobilization co	\$ 150,000		
5	03	Mobilization (\$)	\$ 2,250,000	\$ 741,772		Assume 8% of total project cost.
ti	tal	Injection/aeration equipment	n/a	\$ 4,000,000		
Ö	api	Facilities building	n/a	\$ 300,000		
E	0	Sub-total Capital (\$)	\$ 2,250,000	\$ 5,191,772	\$ -	Alum injection costs are pro-rated over 20 years.
ene		Alum cost (\$/gal)	\$ 1.20	\$ 1.00		
Ū		Sodium aluminate buffer cost (\$/gal)	\$ 2.20	\$ 2.00		
	ost	Injection equipment maintenance and				
	Š	replacement	n/a	\$ 300		Alum injection assumes a 20 year life on equipment.
	08 N	Personnel (\$/day)	n/a	\$ 100		
		Annual (\$/yr)	n/a	\$ 4,080,000		
		Sub-Total O&M (\$)	\$ 177,750,000	\$ 81,600,000		
	Total co	st for project life	\$ 180,000,000	\$ 85,680,000		
_	Days op	erating per year	200	200		
ova	Annual ⁻	ΓΡ load removed (MT/yr)	70	89		
E	Total TP	removed for project life (MT)	560	1,771		
E B	Total TP	removed for project life (kg) (over 10 year for UKL				
5	whole la	ke and 20 year operation alum injection)	699,791	1,770,909		
	TP unit r	emoval cost (\$/kg)	\$ 257	\$ 48		
Con	ments:					

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION

		Lake: whole lake	Lake Ewauna/Keno		
Criteria	- Use H/M/L Rankings and Narrative	alum treatment	Reservoir: alum injection	Copco 1 and Iron	
Descript	tions	only	(includes oxygenation)	Gate Reservoirs	Line of Reasoning/Notes
7 -	Overall DO improvements	Н	М		
ger	Direct or indirect effects?	Indirect	Direct		
oxy Oxy	Season of greatest improvement	Summer/Fall	Summer/Fall		Including Spring
	Other				
	Overall pH improvements	Н	М		
т	Direct or indirect effects?	Indirect	Indirect		
۵.	Season of greatest improvement	Summer/Fall	Summer/Fall		
	Other				
5	Overall water temperature improvements	n/a	n/a		Assuming the design of the air has post-construction cooling
erat	Direct or indirect effects?	n/a	n/a		
đ	Season of greatest improvement	n/a	n/a		
- u	Other				
ä	Overall TSS/turbidity improvements	М	Н		
۲ مل	Direct or indirect effects?	Indirect	Direct		
1 T	Season of greatest improvement	Summer/Fall	Summer/Fall		
LS L	Other				
- ^_	Overall chl-a/algal toxin improvements	Н	М		Distribution of Alum injection sites is dependent on local systems
hd Iga	Direct or indirect effects?	Indirect	Direct		
lord i / a tox	Season of greatest improvement	Summer/Fall	Summer/Fall		
<u></u> ۳	Other				

Comments: We do not think this method will sustain itself because of external loading; and these rankings are based off of this. Will the N:P change? Effect vs. total lbs out. What needs to be done with the floc once it settles out? Where will the floc/sediment settle out; investigate floc transport and distribution. What will happen when we change the enviroenment? Will more microsyctin be produced? We think the same treatment and rankings as with Keno would be relatively the same at Copco; oxygen depleition downstream may be solved from upstream treatments.

Identify Iden	Please make entries in green shaded cells only.		
Name duestion Number desponse Consideration Symmary Circle Number desponse Are the engineering and design requirements for this technology high, medium, or low and why? Number desponse Are the infrastructure requirements for this technology generally high (>0 Uyrs), medium, or low and why? Number desponse Is the infrastructure requirements for this technology generally high (>0 Uyrs), medium, or low and why? Number desponse Is the corp use of this technology high, medium, or low and why? Number desponse Is the corp use of this technology high, medium, or low and why? (Yew "green") Number desponse Is the corp use of this technology high, medium, or low and why? (Yew "green") Number desponse Is the corp use of this technology high, medium, or low and why? (Yew "green") Number desponse Is the corp use of this technology high, medium, or low and why? (Yew, "few") Number desponse Is the corp use of this technology high, medium, or low and why? (Yew, "few") Number desponse Is the corp use of this technology high, medium, or low and why? (Yew, "few") Number desponse Is the corp use of this technology high, medium, or low and why? (Yew, "few") Number desponse Is the corp use of this technology high, medium, or low and why? (Yew, "few") Number desponse Is the corp use o	Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION		
Considerations for summary citeria Here dengine requirements for this techology high, medium, or low and why? H Are the engine requirements for this technology high, medium, or low and why? H Multiple injection sites may be needed Is the inplementation timeframe for this technology generally high (>10 yrs), or low and why? H Electric grid; transport Is the engregues of this technology high, medium, or low and why? H Electric grid; transport Is the engregues of this technology high, medium, or low and why? H Electric grid; transport Is the first of his technology high, medium, or low and why? (I.e., if the medium, or low? H Electric grid; transport Is the first of his technology high, medium, or low and why? (I.e., if the mean zero WQ inprovements are realized, right stachnology, needure, or low and why? (I.e., if the mean zero WQ inprovements are realized, right stachnology, operation has to stay continuous in order to be effective for realized, right stachnology, operation has to stay continuous in order to be effective for realized, right stachnology, rop and wh? M Ob Do Do <th>Narrative Question</th> <th>H/M/L</th> <th>Narrative Response</th>	Narrative Question	H/M/L	Narrative Response
Are the engineering and design requirements for this technology high, medium, or low and why? H Are the infrastructure requirements for this technology generally high (>10 yrs), or low and why? Multiple injection sites may be needed 10 yrs), or low (< 2 yrs) and why? H 10 yrs), or low (< 2 yrs) and why? H 10 yrs), or low (< 2 yrs) and why? H 11 the energy use of this technology high, medium, or low and why? H 12 the energy use of this technology with other large-scale technologies being considered high, medium, or low and why? (How "green" is this Electric grid; transport 13 the first of his technology high, medium, or low and why? (How "green" is this H 15 the first of his technology with other large-scale technologies being considered high, medium, or low and why? (How "green" is this H 15 the first of his technology high, medium, or low and why? (How "green" is this H 15 the first of his technology high, medium, or low and why? (Le, If the money is gent this technology high, medium, or low and why? (Le, If the money is gent to implementation in the kash figh, medium, or low and why? H 15 the ensity further settift is technology repuire that a water right be obtained for consumptive or non-consumptive an acceptable cost to benefit tato?	Considerations for Summary Criteria		
and why? H Instruction Are the infrastructure requirements for this technology high, medium, or low and why? Multiple injection sites may be needed B the implementation timeframe for this technology generally high (>10 yrs), medium, (>10 w and why? Multiple injection sites may be needed B the implementation timeframe for this technology high, medium, or low and why? Multiple injection sites may be needed B the core plane of this technology high, medium, or low and why? Multiple injection sites may be needed B the core plane of this technology high, medium, or low and why? Multiple injection sites may be needed B the core plane of this technology high, medium, or low and why? H B the transport H B the transport H B the transport H B the transport H B the transport to implementation, does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improvements are transport to implementation. does failure mean zero Will improve monocompute very and why? Multiple injection sites and the compoly of a secopy and the set techology/measure?	Are the engineering and design requirements for this techology high, medium, or low		
Are the infrastructure requirements for this technology high, medium, or low and wh? Multiple injection sites may be needed Is the implementation timeframe for this technology generally high (>10 yrs), medium (> 10 yrs), or low (<2 yrs) and wh?	and why?	н	
Internetation timeframe for this technology generally high (>10 yrs), or low (< 2 yrs) and why? M 10 yrs), or low (< 2 yrs) and why?	Are the infrastructure requirements for this technology high, medium, or low and why?		Multiple injection sites may be needed
is the implementation timeframe for this technology generally high (>10 yrs), or low (2 yrs), and why? M M Is technology high, medium, or low and why? (How "green" is this is technology into their large-scale technologies being considered high, medium, or low? Is there a hybrid of several options that makes sense? H Is technology with other large-scale technologies being considered high, medium, or low? Is there a hybrid of several options that makes sense? H Is the first of this technology with other ongoing or anticipated restoration measures high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are mealtered, or just sense hybrid, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are mealtered, or just somewhall test than anticipated)? M OD OD Is the non-option of this technology into a water rught be obtained for consumptive or non-consumptive use? Does this technology/measure address multiple water quality problems? Is it amore or less of allolar solution? H Not global but adressing other WQ issues Does other technology/measure address multiple water quality problems? Is it amore or less of allow and why? H H Not global but adressing other WQ issues Does other technology/measure address multiple water quality problems? Is it amore or less of allow and why? H H Not global but adressing other WQ issues Does this technology/measure address multiple water quality mobile water? H Not global but adressing other WQ issues Does other technology/measure address multiple water quality model was aver? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there identifiable political ramifications for th		н	
10 yrs), or low (< 2 yrs) and why? M is the energy use of this technology high, medium, or low and why? (How "green" is this technology with other large-scale technologies being considered high, medium, or low? is there a hybrid of several options that makes sense? Electric grid; transport is the "ift of this technology with other large-scale technologies being considered high, medium, or low? Is there a hybrid of several options that makes sense? H Electric grid; transport is the "ift of this technology with other ongoing or anticipated restoration measures high, medium, or low and why? (Le., if the second option this technology, neature, or low and why? (Le., if the second option the second option to implementation, does failure mean zero WQ Improvements are realized, or just somewhat less than anticipated]? Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream treatment before implenting this technology. Operation has to stay continuous in order to be effective for Do Does this technology require that a water right be obtained for consumptive or non-consumptive use? M Do Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? H Not global but adressing other WQ issues Does this technology/measure along term solution or improvement? L Need more info Need more info Are there readily identifiable legal constraints on this technology/measure? M Alester understand floc through the system Are there info thabe social or clut	Is the implementation timeframe for this technology generally high (>10 yrs), medium (2	-	
is the energy use of this technology high, medium, or low and why? H Image: technology (measure?) H is the CO2 loading of this technology with other large-scale technologies being considered high, medium, or low? Electric grid; transport Electric grid; transport is the fift of this technology with other ongoing or anticipated restoration measures high, medium, or low? H H is the fift of this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realted, or just somewhat less than anticipated? M is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? H Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream treatmet before implenting this technology. Operation has to stay continuous in order to be effective for DO is the need for further scientific study of this technology require that a water right be obtained for consumptive or nonconsumptive use? M Does this technology require that a water right be obtained for consumptive or nonconsumptive use? Not global but adressing other WQ issues Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Not global but adressing other WQ issues Does this technology/measure a long-term solution or improvement? L Need more info Is the technolog	10 yrs), or low (< 2 yrs) and why?	м	
Is the Co2 loading of this technology high, medium, or low and why? (How "greem" is the technology/measure?) H Edetric grid; transport H Edetric gri	Is the energy use of this technology high, medium, or low and why?	н	
technology/measure?) H is the 'tit' of this technology with other arge-scale technologies being considered high, medium, or low? H is the 'tit' of this technology with other arge-scale technologies being considered high, medium, or low? H is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated? Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream treament before implementing this technology. Operation has to stay continuous in order to be effective for realized, or just somewhat less than anticipated? M Do Is the real-conclogy require that a water right be obtained for consumptive or non-consumptive use? M Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Not global but adressing other WQ issues Does this technology/measure adoress multiple water money is technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? H Are there readily ide	Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		Electric grid; transport
is the fift of this technology with other large-scale technologies being considered high, medium, or low? Is there a hybrid of several options that makes sense? H is the fift of this technology with other ongoing or anticipated restoration measures high, medium, or low? H is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero W0 improvements are realized, or just somewhat less than anticipated? Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream treatment before implementing this technology. Operation has to stay continuous in order to be effective for DO S the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? M Additional Considerations Do Does this technology require that a water right be obtained for consumptive or nonconsumptive use? L Less of a global solution? H Does this technology/measure address multiple water quality problems? Is it a more realized (stoth of this technology/measure?) N Not global but adressing other WQ issues Does this technology/measure a long-term solution or timprovement? L Need more info Is the technology/measure? M A Are there readily identifiable legal constrained for this technology/measure? M Are there readily identifiable legal constrained for this technology/measure? </td <td>technology/measure?)</td> <td>н</td> <td></td>	technology/measure?)	н	
medium, or low? It shere a hybrid of several options that makes sense? H is the 'fit' of this technology with other ongoing or anticipated restoration measures high, medium, or low? H is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated? M Is the need for further scientific study of this technology prior to implementation in the Klamath Basin, medium, or low and why? H Additional Considerations M M Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? N Does this technology/measure along-term solution or improvement? L Need more info Are there readily identifiable legal constraints on this technology/measure? M Not global but adressing other WQ issues Are there readily identifiable political ramifications for this technology/measure? H Improvement? Are there readily identifiable political ramifications for this technology/measure? M Improvement? Are there readily identifiable political ramifications for this technology/measure? M Improvement? Are there readily identifiable political ramifications for this technology/measure? M Improvement? Improvement? Ar	Is the 'fit' of this technology with other large-scale technologies being considered high,		
is the fift' of this technology with other ongoing or anticipated restoration measures high, medium, or low? H is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream treatment before implementing this technology. Operation has to stay continuous in order to be effective for DO is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? M Do Additional Considerations M Do Do Does this technology/measure address multiple water right be obtained for consumptive or non-consumptive use? L Not global but adressing other WQ issues Does this technology/measure provide an acceptable cost to benefit ratio? Need more info Need more info Is this technology/measure provide an acceptable cost to benefit ratio? Need more info Need more info Is the readily identifiable legal constraints on this technology/measure? H Are there readily identifiable political ramifications for this technology/measure? Will this approach create jobs? Of what sort? H Are there identifiable social or cultural impacts from this technology/measure? M M Do Starter identifiable social or unitu	medium, or low? Is there a hybrid of several options that makes sense?	н	
medium, or low? H Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream treatment before implenting this technology. Operation has to stay continuous in order to be effective for DO Additional Considerations M Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream treatment before implenting this technology. Operation has to stay continuous in order to be effective for DO Does this technology require that a water right be obtained for consumptive or non- consumptive use? L L Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Not global but adressing other WQ issues Not global but adressing other WQ issues Does this technology/measure a long-term solution or improvement? L Need more info Image: Single address and Single address address and Single address address and Single address addre	Is the 'fit' of this technology with other ongoing or anticipated restoration measures high	,	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? Additional Considerations Does this technology require that a water right be obtained for consumptive or non- consumptive use? Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Does this technology/measure provide an acceptable cost to benefit ratio? Is this technology/measure along-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? Will this approach create jobs? Of what sort? Are there readily identifiable legal constraints for this technology/measure? Will this approach create jobs? Of what sort? Are there identifiable social or cultural impacts from this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? M H Wat is the potential for unintended consequences for this technology/measure? M H What is the potential for unintended consequences for this technology/measure? M H H H H H H H H H H H H H H H H H H	medium, or low?	н	
money is spent for implementation, does failure mean zero WQ improvements are realized, or just somewhat less than anticipated)? M DO is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? H Do Additional Considerations H H H Does this technology require that a water right be obtained for consumptive or non- consumptive use? L L Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? H Not global but adressing other WQ issues Does this technology/measure a long-term solution or improvement? L Not global but adressing other WQ issues Are there readily identifiable legal constraints on this technology/measure? H Not global but adressing other WQ issues Will this approach create jobs? Of what sort? H Issue? 319? Will this technology/measure? M H Are there readily identifiable local or cultural impacts from this technology/measure? How will this technology/measure? H Issue? 319? Will this technology/measure? H Issue? Issue? Mow will this technology/measure? M Issue? Issue? Issue? Will this tech	Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		Would not be for whole lake; high as a whole lake treatment but low in Keno. Need to implement up stream
realized, or just somewhat less than anticipated)? M DO Is the need for further scientific study of this technology prior to implementation in the klamath Basin high, medium, or low and why? H H Additional Considerations	money is spent for implementation, does failure mean zero WQ improvements are		tretament before implenting this technology. Operation has to stay continuous in order to be effective for
Is the need for further scientific study of this technology prior to implementation in the Klamath Basin high, medium, or low and why? H H H H H H H H H H H H H H H H H H H	realized, or just somewhat less than anticipated)?	м	DO
Klamath Basin high, medium, or low and why? H Additional Considerations	Is the need for further scientific study of this technology prior to implementation in the		
Additional Considerations Does this technology require that a water right be obtained for consumptive or non- consumptive use? L Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Not global but adressing other WQ issues Does this technology/measure provide an acceptable cost to benefit ratio? Need more info Is this technology/measure along-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Are there identifiable social or cultural impacts from this technology/measure? H Will this approach create jobs? Of what sort? H How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Klamath Basin high, medium, or low and why?	н	
Does this technology require that a water right be obtained for consumptive or non- consumptive use? L Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? H Not global but adressing other WQ issues Does this technology/measure provide an acceptable cost to benefit ratio? Need more info Is this technology/measure a long-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Will this approach create jobs? Of what sort? H How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? Better understand floc through the system What is the potential for unintended consequences for this technology/measure? L Better understand floc through the system Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Additional Considerations		
consumptive use? L Does this technology/measure address multiple water quality problems? Is it a more or less of a global solution? Not global but adressing other WQ issues Does this technology/measure provide an acceptable cost to benefit ratio? Need more info Is this technology/measure a long-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? H Are there identifiable social or cultural impacts from this technology/measure? M Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative Better understand floc through the system Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate L Better understand floc through the system Dams? L Better understand floc through the system Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Does this technology require that a water right be obtained for consumptive or non-		
Does this technology/measure address multiple water quality problems? Is it a more or H Not global solution? Dees this technology/measure provide an acceptable cost to benefit ratio? Need more info St his technology/measure along-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? H Are there identifiable social or cultural impacts from this technology/measure? H Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative E Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate L Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	consumptive use?	L	
less of a global solution? H Not global solut adressing other WQ issues Does this technology/measure provide an acceptable cost to benefit ratio? Need more info Is this technology/measure a long-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? H Are there identifiable social or cultural impacts from this technology/measure? H Will this approach create jobs? Of what sort? H How will this technology interact with dam removal, should there be an affirmative M Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Better understand floc through the system Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Does this technology/measure address multiple water quality problems? Is it a more or		
Does this technology/measure provide an acceptable cost to benefit ratio? Need more info Is this technology/measure a long-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Are there ikely to be unique opportunities for funding for this technology/measure? L Mill this approach create jobs? Of what sort? H Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative M Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	less of a global solution?	н	Not global but adressing other WQ issues
Is this technology/measure a long-term solution or improvement? L Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? H Will this approach create jobs? Of what sort? H Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative M Secretarial Determination on the removal of J.C. Boyle, Copo 1 and 2, and Iron Gate L Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Does this technology/measure provide an acceptable cost to benefit ratio?		Need more info
Are there readily identifiable legal constraints on this technology/measure? M Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? H Are there identifiable social or cultural impacts from this technology/measure? H Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative M Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate L Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Is this technology/measure a long-term solution or improvement?	L	
Are there readily identifiable political ramifications for this technology/measure? H Are there likely to be unique opportunities for funding for this technology/measure? L 319? Will this approach create jobs? Of what sort? H Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative M Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate L Better understand floc through the system Dams? L Better understand floc through the system Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Are there readily identifiable legal constraints on this technology/measure?	M	
Are there likely to be unique opportunities for funding for this technology/measure? L 319? Will this approach create jobs? Of what sort? H Are there likely to be unique opportunities for this technology/measure? M Are there likely to be unique opportunities form this technology/measure? M How will this technology interact with dam removal, should there be an affirmative M Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Deter understand floc through the system Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Are there readily identifiable political ramifications for this technology/measure?	н	
Will this approach create jobs? Of what sort? H Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative M Sceretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Better understand floc through the system Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Are there likely to be unique opportunities for funding for this technology/measure?	L	319?
Are there identifiable social or cultural impacts from this technology/measure? M How will this technology interact with dam removal, should there be an affirmative M Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate L Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Will this approach create jobs? Of what sort?	н	
How will this technology interact with dam removal, should there be an affirmative Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Are there identifiable social or cultural impacts from this technology/measure?	м	
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate L Better understand floc through the system Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	How will this technology interact with dam removal, should there be an affirmative		
Dams? L Better understand floc through the system What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
What is the potential for unintended consequences for this technology/measure? Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a lake this big.	Dams?	L	Better understand floc through the system
M lake this big.	What is the potential for unintended consequences for this technology/measure?		Not sure how the downstream dynamics will be effected; algal dynamics. Never done this technology on a
		М	lake this big.

Summary Criteria - Please make entries in green shaded cells only.									
Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION									
Criterion - Use Quantitatve and H/M/L Rankings	Upper Klamath Lake	Lake Ewauna/Keno Reservoir	Other Location	Comments?	For analysis, go to tab				
1. Effectiveness									
a. Total TN removed for project life (MT)	M (10 to 100 MT)			No	Obj 1 - Nutrients				
b. Total TP removed for project life (MT)	H (> 10 MT)			No	Obj 1 - Nutrients				
c. Seasonal DO improvements - indirect or direct?	H-Indirect			No	Obj 2 - Water Quality				
d. Seasonal pH improvements - indirect or direct?	H-Direct			No	Obj 2 - Water Quality				
e. Seasonal TSS/turbidity improvements - indirect or direct?	M-Direct			No	Obj 2 - Water Quality				
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	H-Direct			No	Obj 2 - Water Quality				
2. Cost (estimated)									
a. Total cost for project life	H (\$1M to \$100M)			No	Obj 1 - Nutrients				
b. Cost per unit N removal (\$/kg)	M (\$10 to \$15/kg)			No	Obj 1 - Nutrients				
c. Cost per unit P removal (\$/kg)	M (\$10 to \$100/kg)			Yes	Obj 1 - Nutrients				
3. Engineering challenges	L	L	L	Yes	Narrative Questions				
4. Infrastructure challenges	Н	Н	н	Yes	Narrative Questions				
5. Implementation timeframe	м	М	М	Yes	Narrative Questions				
6. Energy Use	н	Н	н	Yes	Narrative Questions				
7. CO2 Loading	M	Μ	м	Yes	Narrative Questions				
8. Compatability/synergy									
a. With other large-scale technologies considered	н	Н	н	Yes	Narrative Questions				
b. With ongoing or anticipated restoration measures	н	Н	н	Yes	Narrative Questions				
9. Risk of failure?	L	L	L	Yes	Narrative Questions				
10. Need for further scientific study?	Yes	Narrative Questions							
Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support of									

Objective 1: Reduce seasonal concentrations of nutrients - Please make entries in green shaded cells only.

Tec	echnology/Measure: ALGAE BIOMASS REMOVAL VIA FILIRATION										
			Up	per Klamath	Lake Ewauna/Keno						
Crit	erion - U	se Quantitative Rankings		Lake	Reservoir	Other Location	Line of Reasoning/Notes				
	Mole C	per mole biomass		120			loss of intercellular const.				
	Mole N	per mole biomass		16							
	Mole P	per mole biomass		1							
	Barge fi	ltration capacity (lbs wet weight/day)		200,000			single vessel				
	Barge fi	ltration capacity (lbs dry weight/day)		2,000							
1	Project life (yrs)			10							
ti.	N m	Filtration barge (\$)	\$	250,000							
- S	sost	Off-load vessel (tender) (\$)	\$	50,000							
	00	Sub-total capital costs	\$	300,000							
Bue	0&M costs	Fuel for barge and tender (\$/day)	\$	400							
ğ		Maintenance for barge and tender (\$/day)	\$	125							
		Personnel (\$/day)	\$	400							
		Annual (\$/yr)	\$	92,500							
	_	Sub-total O&M (\$)	\$	925,000							
	Total co	st for project life	\$	1,225,000							
	Biomas	s removed (lbs/day)		2,000							
	Carbon	removed (Ibs/day)		1,699							
<u>_</u>	Nitroge	n removed (Ibs/day)		264							
ļ Š	Phosph	orus removed (Ibs/day)		37							
Ren	Total TN	I removed for project life (MT)		120							
Ë	Total TP removed for project life (MT)			17							
⊃	TN unit	removal cost (\$/kg)	\$	10							
							based on this cost, per unit, 100,000 kg P in				
	TP unit removal cost (\$/kg)			74			UKL, 5%/ yr over 10yrs				
Con	nments:			nments:							

Objective 2: Improve overall water quality - Please make entries in green shaded cells only. Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION Lake Ewauna/Keno Other Upper Criterion - Use Qualitative or H/M/L Rankings Klamath Lake Reservoir Location Line of Reasoning/Notes Dissolved Oxygen 5% yr removal- consideration for other sites but focus on Eagle Ridge, direct effect noted Overall DO improvements н for Lake Ewauna if instituted Indirect Direct or indirect effects? Summer/Fall Season of greatest improvement Other Overall pH improvements н Direct or indirect effects? Direct H Summer/Fall Season of greatest improvement Other Temperature Overall water temperature improvements n/a Direct or indirect effects? n/a Season of greatest improvement None Other TSS/Turbidity Overall TSS/turbidity improvements М Direct or indirect effects? Direct Season of greatest improvement Summer/Fall Other Chlorophyll-a Overall chl-a/algal toxin improvements / algal toxins н Direct or indirect effects? Direct Season of greatest improvement Summer/Fall Other Comments:

Please make entries in green shaded cells only.									
Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION									
Narrative Question	H/M/L	Narrative Response							
Considerations for Summary Criteria									
Are the engineering and design requirements for this techology high, medium, or low and		There is existing technology . Assume no permits / regs - See Steve Kirk							
why?	L								
Are the infrastructure requirements for this technology high, medium, or low and why?		Land based technology may be the prefered option. The barge option is consider to be low.							
	н								
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-		Land based technology may be the prefered option. The barge option is consider to be low.							
10 yrs), or low (< 2 yrs) and why?	м								
		There maybe off-set options for energy production; algae as fuel. The land based system is assumed to be low E							
Is the energy use of this technology high, medium, or low and why?	н	use; depending on the location gravity may be used pumping.							
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		Algae harvesting maybe a green option depending on how the algae is used afeter harvesting. If the algae is							
technology/measure?)	м	burned then it is not a green option.							
Is the 'fit' of this technology with other large-scale technologies being considered high,		This technology does not conflict with other techs.							
medium, or low? Is there a hybrid of several options that makes sense?	н								
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		Not a large footprint of the technology. If the land based technology is sited on the ridge there is nothing there							
medium, or low?	н	to conflict with the operation.							
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money		Would need to do proper modeling ahead of time to test feasaility - See Tammy Wood. Are we on target for							
is spent for implementation, does failure mean zero WQ improvements are realized, or		5% / year for 10 years? And does that yeild a benefit?							
just somewhat less than anticipated)?	L								
Is the need for further scientific study of this technology prior to implementation in the		The tools exist and are currently being utilized, may need additional modeling.							
Klamath Basin high, medium, or low and why?	M								
Additional Considerations		1							
Does this technology require that a water right be obtained for consumptive or non-		If the technology is land based - H							
consumptive use?	L								
Does this technology/measure address multiple water quality problems? Is it a more or									
less of a global solution?	Н								
Does this technology/measure provide an acceptable cost to benefit ratio?	Н								
Is this technology/measure a long-term solution or improvement?	М	Over 10 year we may be able to re-set the system, it must be coupled with upstream BMPs							
Are there readily identifiable legal constraints on this technology/measure?	н	May have ESA concerns, water rights, permitting							
Are there readily identifiable political ramifications for this technology/measure?	н	Competition with current harvesters and farmers							
Are there likely to be unique opportunities for funding for this technology/measure?									
	н	There may be cost off-sets; KlamTAP? There are markets that are currently available for algae (ferts, energy)							
Will this approach create jobs? Of what sort?	н	There may be seasonal and high-tech opportunities for the community.							
Are there identifiable social or cultural impacts from this technology/measure?	М	The score is based on a positive evaluation							
How will this technology interact with dam removal, should there be an affirmative									
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		The technology will reduce downstream loads, improving WQ for salmonids and allowing for upstream							
Dams?	Н	migration to the upper tribs							
What is the potential for unintended consequences for this technology/measure?	L	Bycatch of suckers, perhaps? The technology would need to be screened.							

Su	Summary Criteria - please make entries in green shaded cells only.							
Те	chnology/Measure: DREDGING							
Cri	terion - Use a Combination of Quantitatve and H/M/L Rankings and	Upper Klamath	Lake Ewauna/Keno	Other		For detailed analysis,		
Na	rrative Descriptions	Lake	Reservoir	Location	Comments?	go to tab		
1.	Effectiveness							
a.	Total TN removed for project life (MT)	n/a	n/a	n/a	No	Obj 1 - Nutrients		
b.	Total TP removed for project life (MT)	H (>10 MT)	M (<1 to 10 MT)	H (>10 MT)	No	Obj 1 - Nutrients		
c.	Seasonal DO improvements - indirect or direct?	MIndirect	MIndirect		No	Obj 2 - Water Quality		
d.	Seasonal pH improvements - indirect or direct?	MIndirect	MIndirect		No	Obj 2 - Water Quality		
e.	Seasonal TSS/turbidity improvements - indirect or direct?	MIndirect	MIndirect		Yes	Obj 2 - Water Quality		
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	HIndirect	HIndirect		No	Obj 2 - Water Quality		
2.	Cost (estimated)							
a.	Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients		
b.	Cost per unit N removal (\$/kg)	n/a	n/a	n/a	No	Obj 1 - Nutrients		
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		Yes	Obj 1 - Nutrients		
3.	Engineering challenges	н	Н	н	Yes	Narrative Questions		
4.	Infrastructure challenges	Н	Н	н	Yes	Narrative Questions		
5.	Implementation timeframe	М	М	м	Yes	Narrative Questions		
6.	Energy Use	н	н	н	No	Narrative Questions		
7.	CO2 Loading	н	н	н	Yes	Narrative Questions		
8.	Compatability/synergy							
a.	With other large-scale technologies considered	н	н	н	Yes	Narrative Questions		
c.	With ongoing or anticipated restoration measures	L	L	L	Yes	Narrative Questions		
9.	Risk of failure?	L	L	L	Yes	Narrative Questions		
10	Need for further scientific study?	Н	Н	Н	Yes	Narrative Questions		
Co	mments: It is assumed that improvements to water quality in the Klar	nath Basin will in	nprove support of be	neficial uses,	including sup	port of aquatic habitat		

(e.g., support for increased sucker recruitment in Upper Klamath Lake). We assume that the project, if properly implemented, would be a short-term project (~4 years).

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Tec	Technology/Measure: DREDGING									
			U	pper Klamath	Lake	Ewauna/Keno				
Crit	eria - De	velopment of Cost Estimates		Lake		Reservoir	Oth	ner Location	Line of Reasoning/Notes	
	Dredging area (acres)			6,000					Assume 10% area of the basin	
	Dredgir	g depth (ft)		1						
ę	Dredging volume (yd3)			9,680,000		98,000				
100	Depth of highest P concentration in sediments (cm)			10		10				
ţ	Assumed concentration of P in sediments (mg/g dry weight)			0.6		0.6			From Simon et al. (2009)	
ral Co	l & osts	Under lie des deine unit sont (ĉ/ud2)*	ć	150	ė	150			Additional cost for off-set desposal, containments	
Gene	Capita O&M c		,	130	Ş	001			ponds, and testing for toxic materials	
		Hydraulic dredging cost		1,452,000,000	\$	14,700,000	Ş	-		
	Total co	st for project life	\$	1,452,000,000	\$	14,700,000	\$	-		
	Total T	l removed (MT)		-		-				
L_									Changed the value based on targeted remove .3	
0Va	Total TF	removed (MT)**		211		2.1			meter depth and 6,000 mg/square meter	
Ĕ	Total TN	I removed for project life (kg)		-		-				
t B	Total TF	removed for project life (kg)**		211,000		2,136		-		
5	TN unit removal cost (\$/kg)			-		-				
	TP unit	removal cost (\$/kg)**	\$	6,882	\$	6,882		#DIV/0!	Check the formulas in this sheet!! Seems too high.	
* Di	Disposal cost not cantured in the estimate of cost per unit removal.									

** Estimates assume the same P-content of Keno Reservoir sediments as Upper Klamath Lake.

Comments:

Objective 2: Improve overall water quality - please make entries in green shaded cells only. Technology/Measure: DREDGING Upper Klamath Lake Ewauna/Keno Criteria - Use H/M/L Rankings and Narrative Descriptions Lake Reservoir Other Location Line of Reasoning/Notes Overall DO improvements М М Internal load are approx 61% Dissolved Oxygen Direct or indirect effects? Indirect Indirect Season of greatest improvement Summer/Fall Summer/Fall Other Overall pH improvements М Μ Direct or indirect effects? Indirect Indirect H Season of greatest improvement Summer/Fall Summer/Fall Other Temperatur e Overall water temperature improvements n/a n/a Direct or indirect effects? n/a n/a Season of greatest improvement n/a n/a Other TSS/Turbidi ty Overall TSS/turbidity improvements М М This is an assessment of long-term TSS/turbidity from decreased algae blooms Direct or indirect effects? Indirect rather than an assessment of short-term impacts due to dredging. Indirect Season of greatest improvement Summer/Fall Summer/Fall Other Chlorophyll-a / algal Overall chl-a/algal toxin improvements Н Н Direct or indirect effects? Indirect Indirect Summer/Fall Summer/Fall Other Comments:

Please make entries in green shaded cells only.										
Technology/Measure: DREDGING										
Narrative Question	H/M/L	Narrative Response								
Considerations for Summary Criteria										
Are the engineering and design requirements for this techology high, medium, or low		Due to the land based system need to deposit sediment and permitting and toxic screening.								
and why?	н									
Are the infrastructure requirements for this technology high, medium, or low and why?	u	waste disposal; lots of land								
Is the implementation timeframe for this technology generally high (>10 yrs) medium (2		2 - 10 years mobilization and site selections infastucture								
10 vrs), or low (< 2 vrs) and why?	м									
Is the energy use of this technology high, medium, or low and why?	н									
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		transport of material, but may be able to use the material as a soil admendment. The material would need								
technology/measure?)	н	testing.								
Is the 'fit' of this technology with other large-scale technologies being considered high,		Good fit, but the cost, permits and regs may be prohibative								
medium, or low? Is there a hybrid of several options that makes sense?	н									
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high	,	See above								
medium, or low?	L									
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		Risk of failure is dependant the effectivness of the pre-project site selection								
money is spent for implementation, does failure mean zero WQ improvements are										
realized, or just somewhat less than anticipated)?	L									
Is the need for further scientific study of this technology prior to implementation in the		Need modeling work and efficient site selection and testing of the material								
Klamath Basin high, medium, or low and why?	н									
Additional Considerations										
Does this technology require that a water right be obtained for consumptive or non-										
consumptive use?	L									
Does this technology/measure address multiple water quality problems? Is it a more or										
less of a global solution?	М	May address legacy sediments and internal load if the sites selection is accurate								
Does this technology/measure provide an acceptable cost to benefit ratio?	L	The cost is highwithout considering the externalities (toxins, off-site removal, trucking)								
Is this technology/measure a long-term solution or improvement?	н									
Are there readily identifiable legal constraints on this technology/measure?	н	Permits and regs and possible regs for disposal								
Are there readily identifiable political ramifications for this technology/measure?	н									
Are there likely to be unique opportunities for funding for this technology/measure?	L									
Will this approach create jobs? Of what sort?	L									
Are there identifiable social or cultural impacts from this technology/measure?	н									
How will this technology interact with dam removal, should there be an affirmative										
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate										
Dams?	н									
What is the potential for unintended consequences for this technology/measure?	н	Toxins for the material and off-site disposal								

Reporting - 9-12-12

- General Notes:
 - Technologies are not a silver bullet, but rather assumed that any activities would be couched in a watershed scale effort to assure that any one activity would be benefiting by other activities (e.g. Upstream). Specifically that external reductions in P would be carried out in concert with these technologies.
 - All activities would have a longer-term impact, i.e., it will take time, possibly a long time to arrive at improvement
 - There was prodigious discussion on a wide range of topics in an effort to address elements of the workbook: basic assumptions, individuals experience, information gaps (to answer the questions at hand), etc.
 - Everything in Upper Klamath Lake, unless noted. Spent less time on Keno.

In sum:

- algae removal worth continuing to explore
- alum application probably infeasible, but perhaps a pilot to explore methods
- oxygenation not addressed
- dredging largely infeasible

Algal Filtration:

Objective: reduce nutrients in Upper Klamath Lake, reduce oxygen demand below Link Feasibility: Feasible, but many questions.

Effect: potentially high, but need more information (specific technical data)

##Upper Klamath Lake

Key questions/comments

- Once algae is removed, algae may replace it until sufficient P is removed from the system; so, may not see immediate impact.

- **Need to determine the amount of tons of P and N removed with per ton of algae removed to have an effect or desired effect

- May be an economic element when utilizing removed algae
- Question about potential to impact fish species with use of algae removal. -
- Redo economic analysis once questions are answered.
- There is a need for a model for P in the system **A pilot study is recommended

Barge

- Questions about draft of barge and ability to filter/remove in shallow areas. - Question about how much a barge can collect in a day, hour, etc. Need to confirm that algae collected is not toxic to determine future use versus disposal.

-Target areas of greatest accumulation

- Estimated 20,000-25,000 tons wet algae per month in summer months in Upper Klamath Lake

- Data shows 30 metric tons of total P in Upper Klamath Lake outflow (monthly mean value for 1991-2010 period) in June and July.

- If 4 tons of P removed in season, not so great; however, if 40 tons of P removed, may be worth it. At peaks, data shows there is 100 metric tons of P in Upper Klamath Lake.

- Technology while feasible, may not be implementable in some areas due to screening requirements associated with screening requirements, etc. (e.g., sucker larval stage); may work with barge at surface, but maybe not with screen of flow (or target time when larval suckers are no longer present – adaptive each year based on surveys).

Link

Another location to consider would be Link Dam, where it would need to be done each year. Question about whether it makes sense to target area below Link Dam (screen outlet) due to oxygen problems, as an interim measure, recognizing also need to address source coming from Upper Klamath Lake (will take time). Recognize sensitivity of working in Link River corridor.

Summary:

Algal Filtration: Feasible, but many questions. Another location to consider would be Link Dam, where it would need to be done each year. Question about whether it makes sense to target area below Link Dam (screen outlet) due to oxygen problems, as an interim measure, recognizing also need to address source coming from Upper Klamath Lake (will take time). Recognize sensitivity of working in Link River corridor. 20,000-25,000 tons wet algae per month in summer months in Upper Klamath Lake. Question about the extent to which once algae is removed, whether more algae will replace it until sufficient P is removed from the system; so, may not see immediate impact. Questions about draft of barge and ability to filter/remove in shallow areas. Question about how much a barge can collect in a day, hour, etc. Need to confirm that algae collected is not toxic to determine future use versus disposal. Need to determine the amount of tons of P and N removed with per ton of algae removed. Data shows 30 metric tons of total P in Upper Klamath Lake outflow (monthly mean value for 1991-2010 period) in June and July. Need the P budget of lake. If 4 tons of P removed in season, not so great; however, if 40 tons of P removed, may be worth it. Target areas of greatest accumulation. At peaks, data shows there is 100 metric tons of P in Upper Klamath Lake. Suggest model be developed to see how algae removal over time would impact internal loads of P to system. Question about potential to impact fish species with use of algae removal. Redo economic analysis once questions are answered. Technology while feasible, may not be implementable in some areas due to screening requirements associated with screening requirements, etc. (e.g., sucker larval stage); may work with barge at surface, but maybe not with screen of flow (or target time when larval suckers are no longer present – adaptive each year based on surveys).

Oxygenation/Sediment Sequestration:

Objective: phosphorus reduction Feasibility: Feasible, but many questions. Effect: Modest, but may be minimal

Feasible, but may not be effective. Key questions/comments:

- What is pH of sediment?
- What will happen to Al and resuspension potential? Wind driven system.
- Large scale concerns (rate of application, amount, persistence) Cultural/Social/Political issues of Al addition
 - Educational element, not only for cultural/social/political, but for effectiveness and expectation.
- Case studies: Big Bear (3000 acres), Grand Lake (10,000 acres)

• May be worth conducting a pilot study on a small scale.

Summary:

Oxygenation/Sediment Sequestration: Concerned about introducing Al. What is pH of sediment? What will happen to Al and resuspension potential? May be worth conducting a pilot study on a small scale. Scale of problem is so large that it may not be workable. May not be socially or politically viable; in general, tribes do not support addition of chemicals to water. Not effective, at least visually, in Big Bear (potential case study). Importance of good education program for any technology to set expectations for community that benefits will take time (i.e., things will not happen immediately). Another case study is Grand Lake Saint Mary's (Ohio). Wind or currents in lakes that move sediments may make application of alum less beneficial because alum not remaining in place to capture releases from sediments.

Dredging:

Objective: Phosphorus removal to reduce algal blooms, specifically the first bloom. Feasibility: Infeasible Effect: n/a

Generally had similar discussion as with alum treatment (spatial and temporal issues), costs, and effectiveness.

- could take decades to skim 10 cm out of the lake
- identified constraints/issues
 - o ice,
 - o fisheries impacts
 - o depth
 - o location
 - o contaminants (would require sampling)
 - o modifications Upper Klamath Lake storage under KBRA
- Just a giant effort and a partial dredging solution was not pursued because we felt unable to identify a "critical" area to have a desired effect.
- May be an application in Keno, but no objective reason was identified at this time. Keep on table for Keno to consider under potential future prescriptions.

Summary:

Dredging: Comments: If KHSA/KBRA implemented, would add an additional 90,000+ acre-feet of water or ~10 percent increase in area. Questions pertaining to reuse of dredged material. Goal would be to remove sufficient material to short circuit first algal bloom. Concerns about dredging Keno due to contaminants; would recommend testing to see if pesticides, arsenic, etc. are present and levels. Idea to potentially try on pilot basis in Howard Bay to see if improvement. At this point, group thinks this technology is infeasible. Organic matter coming out of Upper Klamath Lake needs to be addressed first because it overwhelms the rest of the watershed (e.g., Keno and beyond). Implemented, would add an additional 90,000+ acre-feet of water or ~10 percent increase in area. Questions pertaining to reuse of dredged material. Goal would be to remove sufficient material to short circuit first algal bloom. Concerns about dredging Keno due to contaminants; would recommend testing to see if pesticides, arsenic, etc. are present and levels. Idea to potentially try on pilot basis in Howard Bay to see if pesticides, arsenic, etc. are present and levels. Idea to potentially try on pilot basis in Howard Bay to see if pesticides, arsenic, etc. are present and levels. Idea to potentially try on pilot basis in Howard Bay to see if improvement. At this point, group thinks this technology is infeasible. Organic matter coming out of Upper Klamath Lake needs to be addressed first because it overwhelms the rest of the watershed (e.g., Keno and beyond).

Summary Criteria - Please make entries in green shaded cells only.								
Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION								
	Upper Klamath	Lake Ewauna/Keno	Other		For analysis, go to			
Criterion - Use Quantitatve and H/M/L Rankings	Lake	Reservoir	Location	Comments?	tab			
1. Effectiveness								
a. Total TN removed for project life (MT)	H (>100 MT)			No	Obj 1 - Nutrients			
b. Total TP removed for project life (MT)	M (10 to 100 MT)			No	Obj 1 - Nutrients			
c. Seasonal DO improvements - indirect or direct?				No	Obj 2 - Water Quality			
d. Seasonal pH improvements - indirect or direct?				No	Obj 2 - Water Quality			
e. Seasonal TSS/turbidity improvements - indirect or direct?				No	Obj 2 - Water Quality			
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?				No	Obj 2 - Water Quality			
2. Cost (estimated)								
a. Total cost for project life	H (\$1M to \$100M)			No	Obj 1 - Nutrients			
b. Cost per unit N removal (\$/kg)	L (< \$10/kg)			No	Obj 1 - Nutrients			
c. Cost per unit P removal (\$/kg)	M (\$10 to \$100/kg)			No	Obj 1 - Nutrients			
3. Engineering challenges				No	Narrative Questions			
4. Infrastructure challenges				No	Narrative Questions			
5. Implementation timeframe				No	Narrative Questions			
6. Energy Use				No	Narrative Questions			
7. CO2 Loading				No	Narrative Questions			
8. Compatability/synergy								
a. With other large-scale technologies considered				No	Narrative Questions			
b. With ongoing or anticipated restoration measures				No	Narrative Questions			
9. Risk of failure?				No	Narrative Questions			
10. Need for further scientific study?				No	Narrative Questions			
Comments: Feasible, but many questions. Another location to con	nsider would be Link	Dam, where it woul	d need to be	done each yea	r. Question about			
whether it makes sense to target area below Link Dam (screen out	let) due to oxygen p	problems, as an interi	im measure, r	ecognizing als	o need to address			
source coming from Upper Klamath Lake (will take time). Recogni	ze sensitivity of wo	rking in Link River cor	ridor. 20,000	-25,000 tons w	et algae per month in			
Summer months in Upper Klamath Lake. Question about the exte	nt to which once alg	ae is removed, whet	her more alga	e will replace	it until sufficient P is			
removed from the system; so, may not see immediate impact. Qu	estions about draft	of barge and ability t	o filter/remo	ve in shallow a	areas. Question about			
how much a barge can collect in a day, hour, etc. Need to confirm	that algae collected	is not toxic to determ	nine future u	se versus disp	osal. Need to			
determine the amount of tons of P and N removed with per ton of	algae removed. Da	ta shows 30 metric to	ons of total P i	in Upper Klam	ath Lake outflow			
(monthly mean value for 1991-2010 period) in June and July. Need the P budget of lake. If 4 tons of P removed in season, not so great: however, if 40 tons of								
P removed, may be worth it. Target areas of greatest accumulation. At peaks, data shows there is 100 metric tons of P in Upper Klamath Lake. Suggest								
model be developed to see how algae removal over time would in	npact internal loads	of P to system. Que	stion about p	otential to imp	pact fish species with			
use of algae removal. Redo economic analysis once questions are	answered. Technol	ogy while feasible, n	nay not be im	, plementable i	n some areas due to			

use of algae removal. Redo economic analysis once questions are answered. Technology while feasible, may not be implementable in some areas due to screening requirements associated with screening requirements, etc. (e.g., sucker larval stage); may work with barge at surface, but maybe not with screen of flow (or target time when larval suckers are no longer present – adaptive each year based on surveys).

Obj	ective 1:	Reduce seasonal concentrations of nutrients	- Ple	ase make ent	ries in green shaded cel	ls only.				
Tec	Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION									
			Up	per Klamath	Lake Ewauna/Keno					
Crit	erion - U	se Quantitative Rankings		Lake	Reservoir	Other Location	Line of Reasoning/Notes			
	Mole C per mole biomass			120						
	Mole N	per mole biomass		16						
	Mole P	per mole biomass		1						
Info	Barge fi	ltration capacity (lbs wet weight/day)		200,000						
	Barge fi	ltration capacity (lbs dry weight/day)		2,000						
	Project life (yrs)			10						
ting	apital costs	Filtration barge (\$)	\$	250,000						
So		Off-load vessel (tender) (\$)	\$	50,000						
Ē	ő	Sub-total capital costs	\$	300,000						
enel		Fuel for barge and tender (\$/day)	\$	400						
ō	l Si	Maintenance for barge and tender (\$/day)	\$	125						
	Š	Personnel (\$/day)	\$	400						
	8	Annual (\$/yr)	\$	337,625						
	_	Sub-total O&M (\$)	\$	3,376,250						
	Total co	st for project life	\$	3,676,250						
	Biomas	s removed (lbs/day)		2,000						
	Carbon	removed (Ibs/day)		1,699						
Za	Nitroge	n removed (lbs/day)		264						
Ĕ	Phosph	orus removed (lbs/day)		37						
tВ	Total TN	I removed for project life (MT)		438						
'n	Total TP	removed for project life (MT)		61						
	TN unit	removal cost (\$/kg)	\$	8						
	TP unit	removal cost (\$/kg)	S	61						

Comments: Feasible, but many questions. Another location to consider would be Link Dam, where it would need to be done each year. Question about whether it makes sense to target area below Link Dam (screen outlet) due to oxygen problems, as an interim measure, recognizing also need to address source coming from Upper Klamath Lake (will take time). Recognize sensitivity of working in Link River corridor. 20,000-25,000 tons wet algae per month in Summer months in Upper Klamath Lake. Question about the extent to which once algae is removed, whether more algae will replace it until sufficient P is removed from the system; so, may not see immediate impact. Questions about draft of barge and ability to filter/remove in shallow areas. Question about how much a barge can collect in a day, hour, etc. Need to confirm that algae collected is not toxic to determine future use versus disposal. Need to determine the amount of tons of P and N removed with per ton of algae removed. Data shows 30 metric tons of total P in Upper Klamath Lake outflow (monthly mean value for 1991-2010 period) in June and July. Need the P budget of lake. If 4 tons of P removed in season, not so great; however, if 40 tons of P removed, may be worth it. Target areas of greatest accumulation. At peaks, data shows there is 100 metric tons of P in Upper Klamath Lake. Suggest model be developed to see how algae removal over time would impact internal loads of P to system. Question about potential to impact fish species with use of algae removal. Redo economic analysis once questions are answered. Technology while feasible, may not be implementable in some areas due to screening requirements associated with screening requirements, etc. (e.g., year based on surveys).

Summary Criteria - please make entries in green shaded cells only.

Te	Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION									
		Upper Klamath Lake:	Lake Ewauna/Keno							
Cri	terion - Use a Combination of Quantitatve and H/M/L Rankings and	whole lake alum	Reservoir: alum injection	Copco 1 and Iron		For detailed analysis,				
Na	rrative Descriptions	treatment only	(includes oxygenation)	Gate Reservoirs	Comments?	go to tab				
1.1	ffectiveness					-				
a.	Total TN removed for project life (MT)	n/a	n/a	n/a	n/a	Obj 1 - Nutrients				
b.	Total TP removed for project life (MT)	H (> 10 MT)	H (> 10 MT)		No	Obj 1 - Nutrients				
c.	Seasonal DO improvements - indirect or direct?				No	Obj 2 - Water Quality				
d.	Seasonal pH improvements - indirect or direct?				No	Obj 2 - Water Quality				
e.	Seasonal TSS/turbidity improvements - indirect or direct?				No	Obj 2 - Water Quality				
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?				No	Obj 2 - Water Quality				
2. (Cost (estimated)	•	•		•	• • •				
a.	Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients				
b.	Cost per unit N removal (\$/kg)	n/a	n/a	n/a	n/a	Obj 1 - Nutrients				
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	M (\$10 to \$100/kg)		No	Obj 1 - Nutrients				
3.1	Engineering challenges				No	Narrative Questions				
4.1	nfrastructure challenges				No	Narrative Questions				
5.1	mplementation timeframe				No	Narrative Questions				
6. I	Energy Use				No	Narrative Questions				
7. (CO2 Loading				No	Narrative Questions				
8. (Compatability/synergy	•								
a.	With other large-scale technologies considered				No	Narrative Questions				
c.	With ongoing or anticipated restoration measures				No	Narrative Questions				
9.1	Risk of failure?				No	Narrative Questions				
10.	Need for further scientific study?				No	Narrative Questions				
Co	mments: Concerned about introducing Al What is nH of sediment? V	What will hannened to 4	Al and resuspension notent	tial? May be worth	conduting a n	ilot study on a small				

Comments: Concerned about introducing Al. What is pH of sediment? What will happened to Al and resuspension potential? May be worth conduting a pilot study on a small scale. Scale of problem is so large that it may not be workable. May not be socially or politically viable; in general, tribes do not support addition of chemicals to water. Not effective, at least visually, in Big Bear (potential case study). Importance of good education program for any technology to set expectations for community that benefits will take time (i.e., things will not happen immediately). Another case study is Grand Lake Saint Mary's (Ohio). Wind or currents in lakes that move sediments may make application of alum less beneficial because alum not remaining in place to capture releases from sediments.

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Tech	chnology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION										
			Upper	Klamath Lake:	Lake Ewauna/Keno						
			who	le lake alum	Reservoir: alum injection		Copco 1 and Iron				
Criteria - Development of Cost Estimates		trea	itment only	(includes oxygenation)		Gate Reservoirs	Line of Reasoning/Notes				
	Lake are	a (acres)		66000	n/a						
	Treated	flow (MGD)	n/a		788						
	Alum do	ose required for lake (g/m2)		80	n/a						
	Alum dose required for injection (mg/L)			n/a	1.65						
	Daily are	ea covered (acres/day)		150	n/a	n/a					
	Project life (years)			8	20			Project life for Upper Klamath Lake is estimated to be 8 to 15 years.			
ę	t	Alum Storage Facility (\$)	incl in	mobilization co	\$	150,000					
5	S	Mobilization (\$)	\$	2,250,000	\$	741,772		Assume 8% of total project cost.			
ti.	ta	Injection/aeration equipment		n/a	\$	4,000,000					
8	Cap	Facilities building		n/a	\$	300,000					
		Sub-total Capital (\$)	\$	2,250,000	\$	5,191,772	\$ -	Alum injection costs are pro-rated over 20 years.			
e		Alum cost (\$/gal)	\$	1.20	\$	1.00					
O	<u>8</u>	Sodium aluminate buffer cost (\$/gal)	\$	2.20	\$	2.00					
	ost	Injection equipment maintenance and									
	Ξ	replacement		n/a	\$	300		Alum injection assumes a 20 year life on equipment.			
	8	Personnel (\$/day)		n/a	\$	100					
		Annual (\$/yr)		n/a	\$	4,080,000					
		Sub-Total O&M (\$)	\$	177,750,000	\$ 8	81,600,000					
	Total co	st for project life	\$	180,000,000	\$ 8	35,680,000					
_	Days op	erating per year		200		200					
ova	Annual [®]	TP load removed (MT/yr)		70		89					
E	Total TP	removed for project life (MT)		560		1,771					
E.	Total TP	removed for project life (kg) (over 10 year for UKL									
5	whole la	ake and 20 year operation alum injection)		699,791		1,770,909					
	TP unit I	removal cost (\$/kg)	\$	257	\$	48					

Comments:

Su	Summary Criteria - please make entries in green shaded cells only.							
Те	chnology/Measure: DREDGING							
Cri	terion - Use a Combination of Quantitatve and H/M/L Rankings and	Upper Klamath	Lake Ewauna/Keno	Other		For detailed analysis,		
Na	rrative Descriptions	Lake	Reservoir	Location	Comments?	go to tab		
1.	Effectiveness	-						
a.	Total TN removed for project life (MT)	n/a	n/a	n/a	No	Obj 1 - Nutrients		
b.	Total TP removed for project life (MT)	H (> 10 MT)	M (<1 to 10 MT)		No	Obj 1 - Nutrients		
c.	Seasonal DO improvements - indirect or direct?	Indirect			No	Obj 2 - Water Quality		
d.	Seasonal pH improvements - indirect or direct?				No	Obj 2 - Water Quality		
e.	Seasonal TSS/turbidity improvements - indirect or direct?				Yes	Obj 2 - Water Quality		
f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?				No	Obj 2 - Water Quality		
2.	Cost (estimated)							
a.	Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients		
b.	Cost per unit N removal (\$/kg)	n/a	n/a	n/a	No	Obj 1 - Nutrients		
c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients		
3.	Engineering challenges	М	М	М	Yes	Narrative Questions		
4.	nfrastructure challenges	Н	н	н	Yes	Narrative Questions		
5.	mplementation timeframe	М	М	М	No	Narrative Questions		
6.	Energy Use	Н	н	н	No	Narrative Questions		
7.	CO2 Loading	Н	Н	н	No	Narrative Questions		
8.	Compatability/synergy					1		
a.	With other large-scale technologies considered	М	М	м	Yes	Narrative Questions		
c.	With ongoing or anticipated restoration measures	L	L	L	No	Narrative Questions		
9.	Risk of failure?	Н	Н	н	Yes	Narrative Questions		
10	Need for further scientific study?	L	L	L	No	Narrative Questions		
Со	Comments: If KHSA/KBRA implemented, would add an additional 90,000+ acre-feet of water or ~10 percent increase in area. Questions pertaining to reuse of							
dre	dredged material. Goal would be to remove sufficient material to short circuit first algal bloom. Concerns about dredging Keno due to contaminants; would							
ree	commend testing to see if pesticides, arsenic, etc. are present and leve	els. Idea to poter	ntially try on pilot bas	is in Howard I	Bay to see if i	mprovement. At this		
po	int, group thinks this technology is infeasible. Organic matter coming	out of Upper Kla	math Lake needs to be	e addressed f	irst because it	t overwhelms the rest		

of the watershed (e.g., Keno and beyond).

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: DREDGING

Crit	eria	 Use H/M/L Rankings and Narrative 	Upper Klamath	Lake Ewauna/Keno		
Des	crip	tions	Lake	Reservoir	Other Location	Line of Reasoning/Notes
d Oxygen		Overall DO improvements				Effect on DO will vary due to frequency and amount dredged; external loading will bring back without additional maintenance. If knock down first bloom, assume High effect that year.
	ē Z	Direct or indirect effects?	Indirect			
	ŝ	Season of greatest improvement				
i	5	Other				
		Overall pH improvements				
	г	Direct or indirect effects?				
)	٩	Season of greatest improvement				
L		Other				
2 5		Overall water temperature improvements				
erat		Direct or indirect effects?				
۱ đ		Season of greatest improvement				
; ₽		Other				
; :	oldity	Overall TSS/turbidity improvements				This is an assessment of long-term TSS/turbidity from decreased algae blooms rather than an assessment of short-term impacts due to dredging.
7	5	Direct or indirect effects?				
3	Ś	Season of greatest improvement				
, i		Other				
) 🛓	_	Overall chl-a/algal toxin improvements				
۱ <u>ط</u>	e i	Direct or indirect effects?				
2 0 -	tox	Season of greatest improvement				
₎ ර		Other				
Cor	nme	nts:				

Please make entries in green shaded cells only.		
Technology/Measure: DREDGING		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low	м	Disposal and determining target location for dredging.
Are the infrastructure requirements for this technology high, medium, or low and why?	Н	Takes land for disposal and barges/equipment for dredging.
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-	-	
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	н	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		
technology/measure?)	н	
Is the 'fit' of this technology with other large-scale technologies being considered high,		Maybe a good fit with other technologies; however, more questions arising due to howsediments become
medium, or low? Is there a hybrid of several options that makes sense?	М	resuspended and move within the lake and ability of sediments to move with currents and wind action.
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,	,	
medium, or low?	L	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		You can do it, but the water quality improvement has a high risk of failure. The number of dredge days (one
money is spent for implementation, does failure mean zero WQ improvements are		dredge) assumed to be 13,300 for the entire Upper Klamath Lake. (Assumes 30,000 cubic yards with a 12-hour
realized, or just somewhat less than anticipated)?	н	day.) Can only be done for 100 days out of year due to weather constraints, fish species, etc.
Is the need for further scientific study of this technology prior to implementation in the		
Klamath Basin high, medium, or low and why?	L	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		
consumptive use?		
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?		
Does this technology/measure provide an acceptable cost to benefit ratio?		
Is this technology/measure a long-term solution or improvement?		
Are there readily identifiable legal constraints on this technology/measure?		
Are there readily identifiable political ramifications for this technology/measure?		
Are there likely to be unique opportunities for funding for this technology/measure?		
Will this approach create jobs? Of what sort?		
Are there identifiable social or cultural impacts from this technology/measure?		
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
What is the potential for unintended consequences for this technology/measure?		

Summary Criteria - Please make entries in green shaded cells only	•				
Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION					
Criterion - Use Quantitatve and H/M/L Rankings	Upper Klamath Lake	Lake Ewauna/Keno Reservoir	Other Location	Comments?	For analysis, go to tab
1. Effectiveness					
a. Total TN removed for project life (MT)	H (>100 MT)			No	Obj 1 - Nutrients
b. Total TP removed for project life (MT)	M (10 to 100 MT)			No	Obj 1 - Nutrients
c. Seasonal DO improvements - indirect or direct?	L-Indirect	H-Indirect		Yes	Obj 2 - Water Quality
d. Seasonal pH improvements - indirect or direct?	L-n/a	L-n/a		No	Obj 2 - Water Quality
e. Seasonal TSS/turbidity improvements - indirect or direct?	L-Direct	H-Direct		No	Obj 2 - Water Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	L-Direct	M-Direct		No	Obj 2 - Water Quality
2. Cost (estimated)					
a. Total cost for project life	H (\$1M to \$100M)			No	Obj 1 - Nutrients
b. Cost per unit N removal (\$/kg)	L (< \$10/kg)			No	Obj 1 - Nutrients
c. Cost per unit P removal (\$/kg)	M (\$10 to \$100/kg)			No	Obj 1 - Nutrients
3. Engineering challenges	н	Н	н	Yes	Narrative Questions
4. Infrastructure challenges	L	L	L	Yes	Narrative Questions
5. Implementation timeframe	М	М	м	Yes	Narrative Questions
6. Energy Use	М	М	М	Yes	Narrative Questions
7. CO2 Loading	L	L	L	Yes	Narrative Questions
8. Compatability/synergy					
a. With other large-scale technologies considered	н	н	н	Yes	Narrative Questions
b. With ongoing or anticipated restoration measures	н	н	н	Yes	Narrative Questions
9. Risk of failure?	М	Μ	М	Yes	Narrative Questions
10. Need for further scientific study?	L	L		Yes	Narrative Questions
Comments: It is assumed that improvements to water quality in the	ne Klamath Basin wi	Il improve support of	f beneficial us	ses (Objective	3), including support of

Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses (Objective 3), including support of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake).

Obj	ective 1:	Reduce seasonal concentrations of nutrients	s - Please make ei	ntries in green shaded o	ells only.	
Tec	hnology/	Measure: ALGAE BIOMASS REMOVAL VIA FIL	TRATION			
			Upper Klamath	Lake Ewauna/Keno		
Crit	erion - U	se Quantitative Rankings	Lake	Reservoir	Other Location	Line of Reasoning/Notes
	Mole C	per mole biomass	120			
	Mole N	per mole biomass	16			
	Mole P	per mole biomass	1			
nfo	Barge fi	Itration canacity (Ibs wet weight/day)	200.000			how much algea is in the lake? What is the daily algea production. How much algea is being exported into the Klamath rivers. How much peak needs to be removed from the first bloom to make an impact to the blue green algea. What is be removal objective?
2	Barge fi	Itration capacity (Ibs dry weight/day)	200,000			green algea. What is he removal objective.
sti	Project	life (vrs)	2,000			
General C	oital costs	Filtration barge (\$)	\$ 250,000			we are not just talking about barges, there are other filtration methods for algea that don't involve barges.
	Ö	Off-load vessel (tender) (\$)	\$ 50,000			
		Sub-total capital costs	\$ 300,000			
	ts .	Fuel for barge and tender (\$/day)	\$ 400			
	8 8	Maintenance for barge and tender (\$/day)	\$ 125			
	S	Personnei (\$/day)	\$ 400			
	õ	Annual (\$/yr)	\$ 337,023			
	Total co	st for project life	\$ 3,570,230			
	Riomaco	removed (lbs/day)	3 3,070,230			
	Carbon	removed (lbs/day)	1 699			
a l	Nitroge	n removed (lbs/day)	264			How much N do you want remove?
1 PE	Phosph	prus removed (lbs/day)	37			How much P do you want to remove?
Ret	Total TN	removed for project life (MT)	438			
ji ji	Total TP	removed for project life (MT)	61			
	TN unit	removal cost (\$/kg)	\$ 8			
1	TP unit I	removal cost (\$/kg)	\$ 61			
Con	nments: t	there needs to be mutiple locations with bot	h mobil and fix te	chnologies for this to b	e effective. Need	at least 1 fixed ttechnology to prevent algea

Comments: there needs to be mutiple locations with both mobil and fix technologies for this to be effective. Need at least 1 fixed ttechnology to prevent algea getting into lake Ahwana. What is the reltative flow from A canal to the river? What is the cost profile of the land based system.

Objective 2: Improve overall water quality - Please make entries in green shaded cells only.

Technol	ogy/Measure: ALGAE BIOMASS REMOVAL V	/IA FILTRATION			
Criterio	n - Use Qualitative or H/M/L Rankings	Upper Klamath Lake	Lake Ewauna/Keno Reservoir	Other Location	Line of Reasoning/Notes
- 73	Overall DO improvements	L	н		
gen	Direct or indirect effects?	Indirect	Indirect		indirect because we are not adding oxygen we are removing a demand.
OXy OXy	Season of greatest improvement	Summer/Fall	Summer/Fall		
	Other				
	Overall pH improvements	L	L		
I	Direct or indirect effects?	n/a	n/a		
<u> </u>	Season of greatest improvement	Summer/Fall	Summer/Fall		
	Other				
e e	Overall water temperature improvements	L	L		
eratu	Direct or indirect effects?	n/a	n/a		
- du	Season of greatest improvement	None	None		
, P	Other				
μ	Overall TSS/turbidity improvements	L	н		How fast is the regrowth as it effect TSS and turbidity.
irbic	Direct or indirect effects?	Direct	Direct		
Ţ	Season of greatest improvement	Summer/Fall	Summer/Fall		
L S	Other				
e s	Overall chl-a/algal toxin improvements	L	М		depends upon technology.
phy toxi	Direct or indirect effects?	Direct	Direct		
lo ro	Season of greatest improvement	Summer/Fall	Summer/Fall		
ະ 5 ∼ຶ	Other				
Comme	nts:				

Please make entries in green shaded cells only.		
Technology/Measure: ALGAE BIOMASS REMOVAL VIA FILTRATION		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low		Due to the amount of algea needed to be removed to make a significant change.
and why?	н	
Are the infrastructure requirements for this technology high, medium, or low and why?	L	Existing infrastructure is in place to accomdate this technology.
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-	-	Time for permitting and planning.
10 yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	м	Staging and locations for the algea use would most likely be within a 10 to 20 mile radius.
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		low for the filtration technology.
technology/measure?)	L	
Is the 'fit' of this technology with other large-scale technologies being considered high,		Yes, there are hybrids that could be utilized along with this technology to assist in lake improvements. For
medium, or low? Is there a hybrid of several options that makes sense?	н	example wetland restoration.
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,	,	Yes, there are hybrids that could be utilized along with this technology to assist in lake improvements. For
medium, or low?	н	example wetland restoration.
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		High if stand alone, medium if coupled with other technologies. The quantity you'd have to remove at link
money is spent for implementation, does failure mean zero WQ improvements are		dam is much less than what you'd have to remove in the lake, so this technology may be better suited for link
realized, or just somewhat less than anticipated)?	м	dam area.
Is the need for further scientific study of this technology prior to implementation in the		Amount of scientific study is low but engineering may be high.
Klamath Basin high, medium, or low and why?	L	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		no. It is an export of what though.
consumptive use?	L	
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?	L	Yes, it does assist with other water quality problems. No it isnt a global solution.
Does this technology/measure provide an acceptable cost to benefit ratio?		
Is this technology/measure a long-term solution or improvement?	L	It isnt a long term solution.
Are there readily identifiable legal constraints on this technology/measure?	L	no.
Are there readily identifiable political ramifications for this technology/measure?	L	no.
Are there likely to be unique opportunities for funding for this technology/measure?		yes.
Will this approach create jobs? Of what sort?		yes. A wide range, maitenance etc.
Are there identifiable social or cultural impacts from this technology/measure?		yes.
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate		
Dams?	L	lower nutrient loads going downstream would be a positive effect on downstream areas.
What is the potential for unintended consequences for this technology/measure?		everything has unitended consequences. Could result in a system wide change. If we remove one alega
	н	species it could create room for another.

Technology/Measure: DREDGING Upper Klamath Lake Evaluation Other For detailed analysis, go to tab Narrative Descriptions 1. Lake Reservoir Location Comments? go to tab 1. Effectiveness n/a n/a n/a Na Obj 1 - Nutrients a. Total TN removed for project life (MT) H (>10 MT) M (<1to IOMT) H (>10 MT) No Obj 1 - Nutrients c. Seasonal DO improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality e. Seasonal DH improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality e. Seasonal Ch-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality 2. Cost (estimated) n/a n/a n/a No Obj 1 - Nutrients a. Total cost for project life VH (>\$100M) H (\$10 to \$100M) No Obj 1 - Nutrients c. Cost per unit N removal (\$/kg) n/a n/a	Su	mmary Criteria - please make entries in green shaded cells only.					
Criterion - Use a Combination of Quantitative and H/M/L Rankings and Narrative Descriptions Upper Klamath Lake Lake Ewauna/Keno Reservoir Other Location For detailed analysis, go to tab 1. Effectiveness	Te	chnology/Measure: DREDGING					
NameLakeReservoirLocationComments?go to tab1. Effectivenessa.Total TN removed for project life (MT)n/an/an/aNoObj 1- Nutrientsb.Total TP removed for project life (MT)H (>10 MT)M (<1 to 10 MT)H (>10 MT)NoObj 1- Nutrientsc.Seasonal D0 improvements - indirect or direct?HIndirectHIndirectNoObj 2- Water Qualityd.Seasonal TS/turbidity improvements - indirect or direct?HIndirectHIndirectNoObj 2- Water Qualitye.Seasonal Ch1-a/algal toxin improvements - indirect or direct?HIndirectHIndirectNoObj 2- Water Qualityf.Seasonal Ch1-a/algal toxin improvements - indirect or direct?HIndirectHIndirectNoObj 2- Water Qualityf.Seasonal Ch1-a/algal toxin improvements - indirect or direct?HIndirectHIndirectNoObj 2- Water Qualityc.Cost per unit N removal (\$/kg)n/an/an/aNoObj 1- Nutrientsb.Cost per unit N removal (\$/kg)n/an/an/aNoObj 1- Nutrientsc.Cost per unit N removal (\$/kg)h(> \$100/kg)H (>\$100/kg)NoObj 1- Nutrientss. Engineering challengesLLYesNarrative Questionss. Implementation timeframeMMMNarrative Questionsf. C-z LoadingMMMNarrative Questionsg. With other large-scale technologies consideredLL <t< th=""><th>Cri</th><th>terion - Use a Combination of Quantitatve and H/M/L Rankings and</th><th>Upper Klamath</th><th>Lake Ewauna/Keno</th><th>Other</th><th></th><th>For detailed analysis,</th></t<>	Cri	terion - Use a Combination of Quantitatve and H/M/L Rankings and	Upper Klamath	Lake Ewauna/Keno	Other		For detailed analysis,
1. Effectiveness a. Total TN removed for project life (MT) n/a n/a n/a No Obj 1 - Nutrients b. Total TP removed for project life (MT) H(>10 MT) M(<1 to 10 MT) H(>10 MT) No Obj 1 - Nutrients c. Seasonal DO improvements - indirect or direct? HIndirect HIndirect MI of Obj 2 - Water Quality d. Seasonal DS/turbidity improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality e. Seasonal Ch1-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality f. Seasonal Ch1-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 1 - Nutrients a. Total cost for project life VH (>\$100M) H (\$1M to \$100M) No Obj 1 - Nutrients b. Cost per unit N removal (\$/kg) n/a n/a n/a No Obj 1 - Nutrients c. Cost per unit N removal (\$/kg) H(>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients c. Cost per unit P removal (\$/kg) M M M Yes Narative Questions f. Infrastructure challenges L L L <td< th=""><th>Na</th><th>rrative Descriptions</th><th>Lake</th><th>Reservoir</th><th>Location</th><th>Comments?</th><th>go to tab</th></td<>	Na	rrative Descriptions	Lake	Reservoir	Location	Comments?	go to tab
a. Total TN removed for project life (MT) n/a n/a n/a n/a No Obj 1 - Nutrients b. Total TP removed for project life (MT) H(>10 MT) H(>10 10 MT) H(>10 MT) No Obj 1 - Nutrients c. Seasonal DO improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality d. Seasonal TS:/turbidity improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality f. Seasonal Ch1-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality z. Cost (estimated) Yes Obj 2 - Water Quality No Obj 2 - Water Quality z. Seasonal Ch1-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 1 - Nutrients c. Cost (setimated) Total cost for project life No Obj 1 - Nutrients No Obj 1 - Nutrients b. Cost per unit N removal (\$/kg) n/a n/a n/a n/a No Obj 1 - Nutrients c. Cost per unit N removal (\$/kg) No No Obj 1 - Nutrients </th <th>1.</th> <th>Effectiveness</th> <th></th> <th></th> <th></th> <th></th> <th></th>	1.	Effectiveness					
b. Total TP removed for project life (MT) H (>10 MT) H (>10 MT) H (>10 MT) H (>10 MT) No Obj 1 - Nutrients c. Seasonal DO improvements - indirect or direct? HIndirect HIndirect HIndirect No Obj 2 - Water Quality d. Seasonal DS/turbidity improvements - indirect or direct? HIndirect HIndirect Wo Obj 2 - Water Quality e. Seasonal Chl-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality c. Seasonal Chl-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality c. Seasonal Chl-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality c. Cost for project life VH (>\$100M) H (\$1M to \$100M) No Obj 1 - Nutrients b. Cost per unit P removal (\$/kg) n/a n/a n/a No Obj 1 - Nutrients c. Cost per unit P removal (\$/kg) H (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients 3. Engineering challenges L L Ves Narrative	a.	Total TN removed for project life (MT)	n/a	n/a	n/a	No	Obj 1 - Nutrients
c. Seasonal DO improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality d. Seasonal PH improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality e. Seasonal TSS/turbidity improvements - indirect or direct? HIndirect HIndirect Ves Obj 2 - Water Quality f. Seasonal Chl-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality f. Seasonal Chl-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality f. Seasonal Chl-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality f. Seasonal Chl-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality c. Costperunt Cost Cost for project life VH (>\$100/M) H (\$100/M) No Obj 1 - Nutrients b. Cost per unit N removal (\$/kg) H (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients 3. Engineering challenges L L L Yes Nara	b.	Total TP removed for project life (MT)	H (>10 MT)	M (<1 to 10 MT)	H (>10 MT)	No	Obj 1 - Nutrients
d. Seasonal pH improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality e. Seasonal TSS/turbidity improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality f. Seasonal ChI-a/algal toxin improvements - indirect or direct? HIndirect HIndirect No Obj 2 - Water Quality z. Cost (estimated) Total cost for project life VH (>\$100M) H (\$1M to \$100M) No Obj 1 - Nutrients a. Total cost for project life VH (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients b. Cost per unit N removal (\$/kg) n/a n/a n/a No Obj 1 - Nutrients 3. Engineering challenges L L L Yes Narrative Questions 4. Infrastructure challenges M M M Yes Narrative Questions 5. Implementation timeframe M M M Yes Narrative Questions 6. Energy Use H H H H No Narrative Questions 7. CO2 Loading Sompatability/syn	c.	Seasonal DO improvements - indirect or direct?	HIndirect	HIndirect		No	Obj 2 - Water Quality
e.Seasonal TSS/turbidity improvements - indirect or direct?HIndirectHIndirectYesObj 2 - Water Qualityf.Seasonal Ch1-a/algal toxin improvements - indirect or direct?HIndirectHIndirectNoObj 2 - Water Quality2. Cost (estimated)a.Total cost for project lifeVH (>\$100M)H (\$1M to \$100M)NoObj 1 - Nutrientsb.Cost per unit N removal (\$/kg)n/an/an/aNoObj 1 - Nutrientsc.Cost per unit P removal (\$/kg)H (>\$100/kg)H (>\$100/kg)NoObj 1 - Nutrients3.Engineering challengesLLLYesNarrative Questions4.Infrastructure challengesMMMYesNarrative Questions5.Implementation timeframeMMMYesNarrative Questions6.Energy UseHHHNoNarrative Questions7.CO2 LoadingMMMYesNarrative Questionsa.With other large-scale technologies consideredLLLNoNarrative Questionsc.With ongoing or anticipated restoration measuresMMMYesNarrative Questions9. Risk of failure?LLLLYesNarrative Questions10. Need for further scientific study?HHHHYesNarrative Questions	d.	Seasonal pH improvements - indirect or direct?	HIndirect	HIndirect		No	Obj 2 - Water Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct? H Indirect H Indirect No Obj 2 - Water Quality 2. Cost (estimated) Total cost for project life VH (>\$100M) H (\$1M to \$100M) No Obj 1 - Nutrients b. Cost per unit N removal (\$/kg) n/a n/a n/a No Obj 1 - Nutrients c. Cost per unit P removal (\$/kg) H (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients 3. Engineering challenges L L L Yes Narrative Questions 4. Infrastructure challenges M M M Yes Narrative Questions 5. Implementation timeframe M M M Yes Narrative Questions 6. Energy Use H H H No Narrative Questions 7. CO2 Loading M M M Yes Narrative Questions c. With other large-scale technologies considered L L No Narrative Questions 6. Energy Use M M M M M Yes Narrative Questions 7. CO2 Loading	e.	Seasonal TSS/turbidity improvements - indirect or direct?	HIndirect	HIndirect		Yes	Obj 2 - Water Quality
2. Cost (estimated) a. Total cost for project life VH (>\$100M) H (\$1M to \$100M) No Obj 1 - Nutrients b. Cost per unit N removal (\$/kg) n/a n/a n/a No Obj 1 - Nutrients c. Cost per unit P removal (\$/kg) H (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients 3. Engineering challenges L L L Yes Narrative Questions 4. Infrastructure challenges M M M Yes Narrative Questions 5. Implementation timeframe M M M Yes Narrative Questions 6. Energy Use H H H No Narrative Questions 7. CO2 Loading M M M Yes Narrative Questions a. With other large-scale technologies considered L L No Narrative Questions c. With ongoing or anticipated restoration measures M M M Yes Narrative Questions g. With other large-scale technologies considered L L No Narrative Questions g. <td>f.</td> <td>Seasonal Chl-a/algal toxin improvements - indirect or direct?</td> <td>HIndirect</td> <td>HIndirect</td> <td></td> <td>No</td> <td>Obj 2 - Water Quality</td>	f.	Seasonal Chl-a/algal toxin improvements - indirect or direct?	HIndirect	HIndirect		No	Obj 2 - Water Quality
a. Total cost for project life VH (>\$100M) H (\$1M to \$100M) No Obj 1 - Nutrients b. Cost per unit N removal (\$/kg) n/a n/a n/a n/a No Obj 1 - Nutrients c. Cost per unit P removal (\$/kg) H (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients 3. Engineering challenges L L L Yes Narrative Questions 4. Infrastructure challenges M M M Yes Narrative Questions 5. Implementation timeframe M M M Yes Narrative Questions 6. Energy Use H H H No Narrative Questions 7. CO2 Loading M M Yes Narrative Questions 7. CO2 Loading M M Yes Narrative Questions 8. With other large-scale technologies considered L L No Narrative Questions c. With ongoing or anticipated restoration measures M M M Yes Narrative Questions 9. Risk of failur	2.	Cost (estimated)					
b. Cost per unit N removal (\$/kg) n/a n/a n/a No Obj 1 - Nutrients c. Cost per unit P removal (\$/kg) H (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients 3. Engineering challenges L L L Yes Narrative Questions 4. Infrastructure challenges M M M Yes Narrative Questions 5. Implementation timeframe M M M Yes Narrative Questions 6. Energy Use H H H No Narrative Questions 7. CO2 Loading M M M Yes Narrative Questions 8. Urb tother large-scale technologies considered L L No Narrative Questions c. With ongoing or anticipated restoration measures M M M Yes Narrative Questions 9. Risk of failure? L L L No Narrative Questions 10. Need for further scientific study? H H H Yes Narrative Questions	a.	Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients
c. Cost per unit P removal (\$/kg) H (>\$100/kg) H (>\$100/kg) No Obj 1 - Nutrients 3. Engineering challenges L L L Yes Narrative Questions 4. Infrastructure challenges M M M Yes Narrative Questions 5. Implementation timeframe M M M Yes Narrative Questions 6. Energy Use H H H No Narrative Questions 7. CO2 Loading M M M Yes Narrative Questions 8. Compatability/synergy M M M Yes Narrative Questions a. With other large-scale technologies considered L L No Narrative Questions c. With ongoing or anticipated restoration measures M M M Yes Narrative Questions 9. Risk of failure? L L L No Narrative Questions 10. Need for further scientific study? H H H Yes Narrative Questions	b.	Cost per unit N removal (\$/kg)	n/a	n/a	n/a	No	Obj 1 - Nutrients
3. Engineering challengesLLLYesNarrative Questions4. Infrastructure challengesMMMYesNarrative Questions5. Implementation timeframeMMMYesNarrative Questions6. Energy UseHHHNoNarrative Questions7. Co2 LoadingMMMYesNarrative Questions8. Compatability/synergyImplementation timeframeNoNarrative Questionsc.With other large-scale technologies consideredLLNoNarrative Questionsc.With ongoing or anticipated restoration measuresMMMYesNarrative Questions9. Risk of failure?LLLYesNarrative Questions10. Need for further scientific study?HHHYesNarrative Questions	c.	Cost per unit P removal (\$/kg)	H (>\$100/kg)	H (>\$100/kg)		No	Obj 1 - Nutrients
4. Infrastructure challengesMMYesNarrative Questions5. Implementation timeframeMMMYesNarrative Questions6. Energy UseHHHNoNarrative Questions7. CO2 LoadingMMMYesNarrative Questions8. Compatability/synergya.With other large-scale technologies consideredLLNoNarrative Questionsc.With other large-scale technologies consideredLLLNoNarrative Questions9. Risk of failure?LLLYesNarrative Questions10. Need for further scientific study?HHHYesNarrative Questions	3.	Engineering challenges	L	L	L	Yes	Narrative Questions
5. Implementation timeframe M M Yes Narrative Questions 6. Energy Use H H H No Narrative Questions 7. CO2 Loading M M M Yes Narrative Questions 8. Compatability/synergy M M M Yes Narrative Questions a. With other large-scale technologies considered L L No Narrative Questions c. With ongoing or anticipated restoration measures M M M Yes Narrative Questions 9. Risk of failure? L L L Yes Narrative Questions 10. Need for further scientific study? H H H Yes Narrative Questions	4.	Infrastructure challenges	м	М	N	Yes	Narrative Questions
6. Energy Use H H H No Narrative Questions 7. CO2 Loading M M M Yes Narrative Questions 8. Compatability/synergy Image: Solution of the solution of th	5.	Implementation timeframe	M	M	Μ	Yes	Narrative Questions
7. CO2 Loading M M Yes Narrative Questions 8. Compatability/synergy Image: Solution of the second of t	6.	Energy Use	н	Н	н	No	Narrative Questions
8. Compatability/synergy a. With other large-scale technologies considered L L No Narrative Questions c. With ongoing or anticipated restoration measures M M M Yes Narrative Questions 9. Risk of failure? L L L Yes Narrative Questions 10. Need for further scientific study? H H Yes Narrative Questions	7.	CO2 Loading	м	М	Μ	Yes	Narrative Questions
a. With other large-scale technologies considered L L No Narrative Questions c. With ongoing or anticipated restoration measures M M M Yes Narrative Questions 9. Risk of failure? L L L Yes Narrative Questions 10. Need for further scientific study? H H H Yes Narrative Questions	8.	Compatability/synergy	-				
c. With ongoing or anticipated restoration measures M M Yes Narrative Questions 9. Risk of failure? L L L Yes Narrative Questions 10. Need for further scientific study? H H H Yes Narrative Questions	a.	With other large-scale technologies considered	L	L	L	No	Narrative Questions
9. Risk of failure? L L Yes Narrative Questions 10. Need for further scientific study? H H H Yes Narrative Questions	c.	With ongoing or anticipated restoration measures	м	М	м	Yes	Narrative Questions
10. Need for further scientific study? H H H Yes Narrative Questions	9.	Risk of failure?	L	L	L	Yes	Narrative Questions
	10	Need for further scientific study?	Н	Н	н	Yes	Narrative Questions

Comments: It is assumed that improvements to water quality in the Klamath Basin will improve support of beneficial uses, including support of aquatic habitat (e.g., support for increased sucker recruitment in Upper Klamath Lake).

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.

Technology/Measure: DREDGING

			U	pper Klamath	ι	Lake Ewauna/Keno		
Crit	eria - Dev	velopment of Cost Estimates		Lake		Reservoir	Other Location	Line of Reasoning/Notes
	Dredgin	g area (acres)		57,328				
								We need to further evaluate the depth. Group
								thinks more than .33 feet and is leaning more
ę	Dredgin	g depth (ft)		1				towards at least 1 foot.
50	Dredgin	g volume (yd3)		92,489,173		98,000		
ţ	Depth o	f highest P concentration in sediments (cm)		10		10		
Ö	Assume	d concentration of P in sediments (mg/g dry weight)		0.6		0.6		From Simon et al. (2009)
eral								
Gen	tal &	Hydraulic dredging unit cost (\$/yd3)*	\$	15	\$	15		
1	Capi N&M							
	0	Hydraulic dredging cost	\$	1,387,337,600	\$	1,470,000	\$ -	
	Total co	st for project life	\$	1,387,337,600	\$	1,470,000	\$ -	
	Total TN	removed (MT)		-		-		
								Is there a legacy for P in the sediments? How many
								years supply would there be if it were made
ē								avaiable. The size of the resivouir isn't as important
Re.	Total TP	removed (MT)**		1,392		1.5		as the release rate.
븉	Total TN	removed for project life (kg)		-		-		
D	Total TP	removed for project life (kg)**		1,392,000		1,475	-	
	TN unit	removal cost (\$/kg)		-		-		
•	TP unit I	removal cost (\$/kg)**	\$	997	\$	997	#DIV/0!	
* D	isposal co	st not captured in the estimate of cost per unit remo	val.					
** [stimates	assume the same P-content of Keno Reservoir sedin	nent	s as Upper Klam	ath	1 Lake.		

Comments: Some of the P is stored in the iron in the sediments. How deep would you have to dredge for a P reduction?

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technol	logy/Measure: DREDGING				
Criteria	- Use H/M/L Rankings and Narrative	Upper Klamath	Lake Ewauna/Keno		
Descript	tions	Lake	Reservoir	Other Location	Line of Reasoning/Notes
d Oxygen	Overall DO improvements	н	н		huch does the sedimentry layer contribute to the nutrient load? This implies a whole lake treatment. If you can reduce the algea in the U.Klamath lake and its effective you can have a high effect to the Lake Ewauna/Keno Reservoir.
_ ×	Direct or indirect effects?	Indirect	Indirect		
sso	Season of greatest improvement	Summer/Fall	Summer/Fall		
ö	Other				
	Overall pH improvements	н	Н		
т	Direct or indirect effects?	Indirect	Indirect		
<u>م</u>	Season of greatest improvement	Summer/Fall	Summer/Fall		
	Other				
h	Overall water temperature improvements	L	L		
erat	Direct or indirect effects?	na	na		
đ	Season of greatest improvement				
- E	Other				
ğ	Overall TSS/turbidity improvements	н	Н		This is an assessment of long-term TSS/turbidity from decreased algae blooms
۲ d	Direct or indirect effects?	Indirect	Indirect		rather than an assessment of short-term impacts due to dredging.
5/T	Season of greatest improvement	Summer/Fall	Summer/Fall		
Ts	Other				
	Overall chl-a/algal toxin improvements	Н	Н		
hqo Iga	Direct or indirect effects?	Indirect	Indirect		
lord tox	Season of greatest improvement	Summer/Fall	Summer/Fall		
ຽ ຶ	Other				
Comme	nts: Our answeres for the Keno reach are ass	uming dredging in	Upper Klamath Lake.		

Please make entries in green shaded cells only.		
Technology/Measure: DREDGING		
Narrative Question	H/M/L	Narrative Response
Considerations for Summary Criteria		
Are the engineering and design requirements for this techology high, medium, or low and		been applied in many other places and is known technooogy. Though this may be the largest lake this technology
why?	L	is used on.
Are the infrastructure requirements for this technology high, medium, or low and why?		would require lots of trucking trips to export the dredge. Where do you dispose of the dredge soils? Need to
	м	know if the dredge could be hazzardous.
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2-10		permitting could take a few years to resolve. ACOE permit.
yrs), or low (< 2 yrs) and why?	м	
Is the energy use of this technology high, medium, or low and why?	н	
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this		Depends on where the energy is obtained. Move the dredge can be CO2 intensive.
technology/measure?)	м	
Is the 'fit' of this technology with other large-scale technologies being considered high,		
medium, or low? Is there a hybrid of several options that makes sense?	L	
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high,		spoils can be used to assist in remidating the subsidance.
medium, or low?	м	
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the money		how much of the lake would have to be dredged for this to be effective? Need to understand the adequate
is spent for implementation, does failure mean zero WQ improvements are realized, or just		depth. If you don't complete the entire job the risk can be high but if done right the risk is low. Also depends on
somewhat less than anticipated)?		if this is a political question or scientific. If you reduced bloom by 50% scientifically its good but politically?public
	L	perception it could be viewed as low
Is the need for further scientific study of this technology prior to implementation in the		there is a need for further scientific research to collect more data.
Klamath Basin high, medium, or low and why?	н	
Additional Considerations		
Does this technology require that a water right be obtained for consumptive or non-		no
consumptive use?	L	
Does this technology/measure address multiple water quality problems? Is it a more or		
less of a global solution?		yes
Does this technology/measure provide an acceptable cost to benefit ratio?		This is a costly treatment option. How long would the improved effect last in relation to the cost of the activity?
		What is the maintenance?
Is this technology/measure a long-term solution or improvement?		
Are there readily identifiable legal constraints on this technology/measure?		
Are there readily identifiable political ramifications for this technology/measure?		
Are there likely to be unique opportunities for funding for this technology/measure?		
Will this approach create jobs? Of what sort?		
Are there identifiable social or cultural impacts from this technology/measure?		
How will this technology interact with dam removal, should there be an affirmative		
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate Dams?		
What is the potential for unintended consequences for this technology/measure?		Are there other contamients in the sediments?

Summary Criteria - please make entries in green shaded cells only.

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION					
Criterion - Use a Combination of Quantitatve and H/M/L Rankings and	Upper Klamath Lake: whole lake alum	Lake Ewauna/Keno Reservoir: alum injection	Copco 1 and Iron		For detailed analysis,
Narrative Descriptions	treatment only	(includes oxygenation)	Gate Reservoirs	Comments?	go to tab
1. Effectiveness					
a. Total TN removed for project life (MT)	n/a	n/a	n/a	n/a	Obj 1 - Nutrients
b. Total TP removed for project life (MT)	H (>10 MT)	H (> 10 MT)		No	Obj 1 - Nutrients
c. Seasonal DO improvements - indirect or direct?	HIndirect	HDirect		No	Obj 2 - Water Quality
d. Seasonal pH improvements - indirect or direct?	HIndirect	HIndirect		No	Obj 2 - Water Quality
e. Seasonal TSS/turbidity improvements - indirect or direct?	HIndirect	HIndirect		No	Obj 2 - Water Quality
f. Seasonal Chl-a/algal toxin improvements - indirect or direct?	HIndirect	HIndirect		No	Obj 2 - Water Quality
2. Cost (estimated)					
a. Total cost for project life	VH (>\$100M)	H (\$1M to \$100M)		No	Obj 1 - Nutrients
 Cost per unit N removal (\$/kg) 	n/a	n/a	n/a	n/a	Obj 1 - Nutrients
c. Cost per unit P removal (\$/kg)	H (>\$100/kg)	M (\$10 to \$100/kg)		No	Obj 1 - Nutrients
3. Engineering challenges	L	L	L	Yes	Narrative Questions
4. Infrastructure challenges	L	L	L	No	Narrative Questions
5. Implementation timeframe	M	М	М	Yes	Narrative Questions
6. Energy Use	м	М	М	No	Narrative Questions
7. CO2 Loading	L	L	L	Yes	Narrative Questions
8. Compatability/synergy					
a. With other large-scale technologies considered	M	M	М	Yes	Narrative Questions
c. With ongoing or anticipated restoration measures	М	М	М	Yes	Narrative Questions
9. Risk of failure?	L	L	L	Yes	Narrative Questions
10. Need for further scientific study?	L	L	L	No	Narrative Questions
Comments: It is assumed that improvements to water quality in the Klan	nath Basin will improve	support of beneficial uses	, including support	of aquatic hab	itat (e.g., support for

increased sucker recruitment in Upper Klamath Lake).

Objective 1: Reduce seasonal concentrations of nutrients - please make entries in green shaded cells only.	
,	

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION

Viscous Viscous Viscous Lake Evaluation whole lake alum treatment only (includes oxygenation) (includes oxygenatiox) (includes oxygenation) (includes oxygenation) (includes oxyge	does. Need to ime concerns e 8 to 15 years.
Criteria Velobelake alum treatment only Treated flow (MGD) Reservoir: alum injection (includes oxygenation) Copco 1 and Iron Gate Reservoirs Line of Reasoning/Notes I alke area (acres) 66000 n/a 6400 n/a 6400 Treated flow (MGD) n/a 788 work would need to be done to fully know the load also be aware of the pH in the lake. There may be s about the water collumn pH being above 9.5 Alum dose required for injection (mg/L) n/a 1.65 about the water collumn pH being above 9.5 Daily area covered (acres/day) 150 n/a Project life (years) Project life (years) Injection (s) \$ 2,250,000 \$ 741,772 Assume 8% of total project cost. Injection/aeration equipment n/a 3 00,000 Index on the fully index on the fully index on the cost are pro-rated over 20 years. Sodium aluminate buffer cost (S/gal) \$ 2,250,000 \$ 5,191,772 \$ Alum injection costs are pro-rated over 20 years. Injection equipment maintenance and replacement n/a 300 Alum injection assumes a 20 year life on equipment	does. Need to ome concerns
Criteria - Development of Cost Estimates treatment only (includes oxygenation) Gate Reservoirs Line of Reasoning/Notes Lake area (acres) 66000 n/a 78 78 788 7	does. Need to ome concerns
Lake area (acres) 66000 n/a Main of the second of the	does. Need to ome concerns
Image: Project If e (years) n/a 788 mode work would need to be done to fully know the load also be aware of the pH in the lake. There may be s about the water collumn pH being above 9.5 Image: Project If e (years) n/a 1.65 Project If e (years) Num dose required for injection (mg/L) n/a 1.65 Daily area covered (acres/day) 150 n/a Project If e (years) 8 20 Project If e (years) 9 9 Project If e (years) 9 9 Mum storage Facility (S) 101 in mobilization cc 5 Injection/aeration equipment n/a 3 4,000,000 Injection/aeratial (S) 5 2,250,000 5 5,191,772 Statum cost (S/gal) 5 1.20 1.00 Sodium aluminate buffer cost (S/gal) 5 2.00 2 Statum cost (S/gal) 5 2.00 4.000 Injection equipment maintenance and replayment maintenance and replayment maintenan	does. Need to ome concerns e 8 to 15 years.
Alum dose required for lake (g/m2) 80 n/a work would need to be done to fully know the load also be aware of the pH in the lake. There may be s about the water collumn pH being above 9.5 Alum dose required for injection (mg/L) n/a 1.65 about the water collumn pH being above 9.5 Daily area covered (acres/day) 150 n/a project life (years) 88 20 Project life (years) 8 20 project life for Upper Klamath Lake is estimated to in mobilization cc \$ 150,000 project life for Upper Klamath Lake is estimated to injection/aeration equipment n/a \$ 4,000,000 project life for Upper Klamath Lake is estimated to injection/aeration equipment Injection/aeration equipment n/a \$ 300,000 4lum cost (\$/gal) \$ 2,250,000 \$ 5,191,772 Alum injection costs are pro-rated over 20 years. Alum cost (\$/gal) \$ 1.20 \$ 1.00 project life on equipment project if on upper klamath Lake is estimated on the injection costs are pro-rated over 20 years. Alum cost (\$/gal) \$ 2,250,000 \$ 5,191,772 \$ Alum injection costs are pro-rated over 20 years. Alum cost (\$/gal) \$ 2,200,000 5 1.00 project if on equipment maintenance and replacement project if on equipment maintenance and replacement	does. Need to ome concerns
Alum dose required for injection (mg/L) n/a 1.65 Image: Construction (mg/L) n/a Daily area covered (acres/day) 150 n/a Project life (years) Project life (years) 8 20 Project life for Upper Klamath Lake is estimated to Mobilization (\$) incl in mobilization cc \$ 150,000 Project life for Upper Klamath Lake is estimated to Mobilization (\$) \$ 2,250,000 \$ 741,772 Assume 8% of total project cost. Injection/aeration equipment n/a \$ 300,000 Project life or upper Klamath Lake is estimated or upper Klamath Lake is estimated or upper Klamath Lake is estimated to Sub-total Capital (\$) \$ 2,250,000 \$ 741,772 Assume 8% of total project cost. Mobilization (\$) \$ 2,250,000 \$ 5,191,772 \$ Alum injection costs are pro-rated over 20 years. Alum cost (\$/gal) \$ 1.20 \$ 1.00 Project life on equipment Sodium aluminate buffer cost (\$/gal) \$ 2.20 \$ 2.00 Project life on equipment Injection equipment maintenance and replacement n/a \$ 300 Alum injection assumes a 20 year life on equipment <td>oe 8 to 15 years.</td>	oe 8 to 15 years.
Op Daily area covered (ares/day) 150 n/a Daily area covered (ares/day) 150 n/a Project life (years) 8 20 Project life (years) 8 20 Mobilization (\$) \$ 2,250,000 \$ 741,772 Assume 8% of total project cost. 10 Facilities building n/a \$ 300,000 Sub-total Capital (\$) \$ 2,250,000 \$ 5,191,772 Sodium aluminate buffer cost (\$/gal) \$ 2,250,000 \$ 5,191,772 Sodium aluminate buffer cost (\$/gal) \$ 2,200 \$ 5,200 Sodium aluminate buffer cost (\$/gal) \$ 2,200 \$ 2,200 Matrix \$ 1.20 \$ 1.00 Alum cost (\$/gal) \$ 2.20 \$ 2.00 Sodium aluminate buffer cost (\$/gal) \$ 2.20 \$ 2.00 Alum injection acupipment maintenance and replacement n/a \$ 300	e 8 to 15 years.
Project life (years) 8 20 Project life (years) 9 150,000 Project life (years) 9 150,000 Mobilization (\$) \$ 2,250,000 \$ 741,772 Alum Storage Facility (\$) 10 10 Facilities building n/a \$ 300,000 Sub-total Capital (\$) \$ 2,250,000 \$ 5,191,772 Sub-total Capital (\$) \$ 2,250,000 \$ 5,191,772 Sodium aluminate buffer cost (\$/gal) \$ 2,200 \$ 2,000 Sodium aluminate buffer cost (\$/gal) \$ 2,200 \$ 2,000 Injection equipment maintenance and replacement n/a \$ 300 Alum injection assumes a 20 year life on equipment	e 8 to 15 years.
Note Alum Storage Facility (\$) Incl in mobilization cc \$ 150,000 Assume 8% of total project cost. Image: State of the state o	
Wobilization (\$) \$ 2,250,000 \$ 741,772 Assume 8% of total project cost. Injection/aeration equipment n/a \$ 4,000,000 Injection/aeration equipment Facilities building n/a \$ 300,000 Injection costs are pro-rated over 20 years. Alum cost (\$/gal) \$ 1.20 \$ 1.00 Injection equipment maintenance and replacement Injection equipment maintenance and replacement n/a \$ 300 Alum injection assumes a 20 year life on equipment	
O regin to the problem of the probl	
Facilities building n/a 300,000 Facilities building n/a 300,000 Alum injection costs are pro-rated over 20 years. Sub-total Capital (\$) \$ 2,250,000 \$ 5,191,772 \$ Alum injection costs are pro-rated over 20 years. Sodium aluminate buffer cost (\$/gal) \$ 1.20 \$ 1.00 Injection equipment maintenance and replacement n/a \$ 300 Alum injection assumes a 20 year life on equipment	
B C Sub-total Capital (\$) \$ 2,250,000 \$ 5,191,772 \$ - Alum injection costs are pro-rated over 20 years. No Alum cost (\$/gal) \$ 1.20 \$ 1.00 -	
Alum cost (\$/gal) \$ 1.20 \$ 1.00 Sodium aluminate buffer cost (\$/gal) \$ 2.20 \$ 2.00 Injection equipment maintenance and replacement n/a \$ 300	
Sodium aluminate buffer cost (\$/gal) \$ 2.20 \$ 2.00 Injection equipment maintenance and replacement n/a \$ 300	
Injection equipment maintenance and replacement n/a \$ 300 Alum injection assumes a 20 year life on equipment	
Personnel (\$/day) n/a \$ 100	
Sub-Total Q&M (\$) \$ 172,750,000 \$ 81,600,000	
Total cost for project life \$ 180,000,000 \$ 85,680,000	
Days operating per year 200 200	
Annual TP load removed (MT/yr) 70 89	
Total TP removed for project life (MT) 560 1,771	
Total TP removed for project life (kg) (over 10 year for UKL	
5 whole lake and 20 year operation alum injection) 699,791 1,770,909	
TP unit removal cost (\$/kg) \$ 257 \$ 48	
Comments: Is this a continous treatment with Keno?	

Objective 2: Improve overall water quality - please make entries in green shaded cells only.

Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION

		Lake: whole lake	Lake Ewauna/Keno				
Criteria - Use H/M/L Rankings and Narrative		alum treatment	Reservoir: alum injection	Copco 1 and Iron			
Descriptions		only	(includes oxygenation)	Gate Reservoirs	Line of Reasoning/Notes		
Dissolved Oxygen	Overall DO improvements	Н	Н		if it were effective in algea control.		
	Direct or indirect effects?	Indirect	Direct				
	Season of greatest improvement	Summer/Fall	Summer/Fall				
	Other						
Hd	Overall pH improvements	Н	Н				
	Direct or indirect effects?	Indirect	Indirect				
	Season of greatest improvement	Summer/Fall	Summer/Fall				
	Other						
Temperatur e	Overall water temperature improvements	n/a	n/a				
	Direct or indirect effects?						
	Season of greatest improvement						
	Other						
TSS/Turbidi ty	Overall TSS/turbidity improvements	Н	Н				
	Direct or indirect effects?	Indirect	Indirect				
	Season of greatest improvement	Summer/Fall	Summer/Fall				
	Other						
Chlorophyll- a / algal toxins	Overall chl-a/algal toxin improvements	Н	Н				
	Direct or indirect effects?	Indirect	Indirect				
	Season of greatest improvement	Summer/Fall	Summer/Fall				
	Other						
Comments:							

Please make entries in green shaded cells only.							
Technology/Measure: OXYGENATION/SEDIMENT SEQUESTRATION							
Narrative Question	H/M/L	Narrative Response					
Considerations for Summary Criteria							
Are the engineering and design requirements for this techology high, medium, or low		Need to work out potential dosing and pH					
and why?	L						
Are the infrastructure requirements for this technology high, medium, or low and why?	L						
Is the implementation timeframe for this technology generally high (>10 yrs), medium (2	-	On low end of range					
10 yrs), or low (< 2 yrs) and why?	м						
Is the energy use of this technology high, medium, or low and why?	м						
Is the CO2 loading of this technology high, medium, or low and why? (How "green" is this	;	Transport					
technology/measure?)	L						
Is the 'fit' of this technology with other large-scale technologies being considered high,		medium with the exception of dredging.					
medium, or low? Is there a hybrid of several options that makes sense?	м						
Is the 'fit' of this technology with other ongoing or anticipated restoration measures high	,	except for dredging.					
medium, or low?	м						
Is the risk of failure with this technology high, medium, or low and why? (i.e., if the		low if designed correctly. If effect is just a percentage of what was expected we would want it to be used in					
money is spent for implementation, does failure mean zero WQ improvements are		conjuction with other treatment techniques with the exception of dredging.					
realized, or just somewhat less than anticipated)?	L						
Is the need for further scientific study of this technology prior to implementation in the							
Klamath Basin high, medium, or low and why?	L						
Additional Considerations							
Does this technology require that a water right be obtained for consumptive or non-		no					
consumptive use?							
Does this technology/measure address multiple water quality problems? Is it a more or							
less of a global solution?		yes but not a global solution.					
Does this technology/measure provide an acceptable cost to benefit ratio?		yes. It has in past uses but the group has some disagreement.					
Is this technology/measure a long-term solution or improvement?	м	Lakes need to be redosed every 10 years (typically)					
Are there readily identifiable legal constraints on this technology/measure?		no.					
Are there readily identifiable political ramifications for this technology/measure?		yes there can be political and public education issues.					
Are there likely to be unique opportunities for funding for this technology/measure?		no					
Will this approach create jobs? Of what sort?		minimal.					
Are there identifiable social or cultural impacts from this technology/measure?		no.					
How will this technology interact with dam removal, should there be an affirmative							
Secretarial Determination on the removal of J.C. Boyle, Copco 1 and 2, and Iron Gate							
Dams?		no interaction.					
What is the potential for unintended consequences for this technology/measure?	н	don't know future implications of this project. Could have economic consequences.					
Day 2 – Small Group Design Charrette: Linking Multiple Projects for Basin-Scale Water Quality Improvements

Group 1

Combination of Technologies

- Algal Biomass Removal:
 - Modeling and Pilot study of algal biomass removal in Upper Klamath Lake and Link River (Pilot Study C)
 - o Divert algal biomass at A Canal (removal at A Canal Flotation
- Dredging:
 - o No Dredging
 - No Alum or Aeration in Upper Klamath Lake
- Aeration/oxygenation Sediment Sequestration:
 - o Aeration and alum use below Link River Dam
- Restored and Diffuse Treatment Wetlands:
 - o Some diffuse wetland restoration in riparian corridors of upper Sprague
 - o Pasture-level wetlands in 2% of irrigated agriculture
 - Divert water into Lower Klamath NWR from Klamath Straits Drain and/or Klamath River via ADY Canal
 - Wetland restoration at Miller Island Improve connectivity to Keno Reservoir
- Treatment Wetlands:
 - Potential for treatment wetlands at lower end of Sprague, lower Wood and lower Seven Mile (LIDAR use for identifying sites)
 - o Williamson is lower priority due to existing functional marsh
 - Treatment wetlands at Barnes Ranch, Agency Lake Ranch, Caledonia Ranch, Wocas Marsh, Lower Klamath Lake,

											Progra	am Yea	r								
Design/ Planning Component	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Est. Cost (\$M)
BMP Imp.																					50
Effect. Monit. & Assess.																					20
Aeration/Alum Injection																					70
Modeling/ Mechanism				1																	70
Study:				II -																	1
Pilot Study A: Treatment				Π																	
Wetland Pilot Study B: Pestored				Η-																	25
Wetlands																					10
Pilot Study C: Algal Biomass					laia S	Sinae	er:														
Removal				D	ecisio	n poi	nt co	lor													2
AM Decision Point 1 (pilot studies)				m	atche	es pro	oject	color													
Project A: Treatment Wetlands (137,000 acres)																					275
Project B: Restored and									_												2.13
Diffuse Wetlands (50,000																					107
Project C: Algal Biomass																					
Removal at UKL and Link				<u> </u>																	10
AM Decision Point 2+																					
Program Total																					570

										Pro	gra	m١	/ear	-							Est. %
Measurable																					Red.
WQ Imprv.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	t=20
TN																					
ТР																					
D.O.																					
рН																					
Turbidity/TSS																					
Chl-a																					
Algal toxins																					
Other																					

Assumptions/ Considerations/ Guiding Principles

- 1. Geographic area begins at headwaters and extends to Keno Dam
- 2. Assume that dams are still in place.
- 3. Assume that 28.5 mil has same buying power over 20 year span (2012 dollars)
- 4. Climate change will affect project cost, land use, efficacy, etc. over time. Project selections must have longevity in the face of climate change/ Resiliency to survive future climate change, land use change, needs of fish
- 5. Phasing- organize projects into short term vs. long term solutions. Need to consider near term, mid term and long term aspects of projects
- 6. Consider/ design for implications beyond 20 years (i.e.: 20 years is in the short term). Divide design sections into geographic areas and short/mid/long term solutions
- 7. Allocate funds according to magnitude of problem within geographic area
- 8. Some activities are urgently needed to keep threatened species alive to see the future
- 9. Based on current knowledge without additional information
- 10. Present technology and energy costs
- 11. Wetlands = treatment wetlands

Geographic Area #1: Main tribs

- 1. Williamson River
- 2. Sprague River
- 3. Wood River

Geographic Area #2: Upper Klamath Lake Geographic Area #3: Keno Reach and Lost River System

Treatment Opportunities in Area #1

- Williamson River water quality good. Well- vegetated. No treatment technologies needed. Not as much potential for treatment opportunities and P reduction.
- Wood and Seven Mile naturally occurring high P in Wood subbasin aquifers. Wetlands for nutrient removal. Discussed the general possibility of opportunities for treatment wetlands that will transition into habitat wetland system (for all geographic areas). Focus on the removal of phosphorus. Seven Mile: diffuse wetlands.
- Sprague River –restore temp in Sprague (for sucker fish and anadromous fish requirements). Have farmers use well rather than spring water. Reconnect spring system. Get cold groundwater recharge back into the system. Change in point of diversion. Control juniper encroachment at springs and seeps. (Modification of hydrology is a technology that has not been discussed at workshop, but is important and a recommendation.) Biomass of juniper has the potential for use as biochar/ energy production (\$225/acre to remove juniper) Riparian corridor management. Riparian/ wetland restoration/ management. Diffuse wetlands. Channelization in N & S forks—reconnection, restore natural channel. Irrigation system- improved management. Improve BMPs.

Treatment Opportunities in Area #2

Dredging in areas of high sediment—to remove P and to create wetlands (15,000 ac of lake bottom) and create wetlands (dredging: \$5-15 y3). Remove material to create wetland berms around Agency Lake Ranch parcel. Dredging 15,000 ac of lake bottom will cost between \$40- 120 mil. Passive approach also discussed (no dredging, only wetland restoration). 10,000 acres likely for potential treatment sites in this area.

- Alum discussed- looked at as a potential short term solution. Large lake scale precedents have proven relatively unsuccessful. Better for downstream? Pilot scale project?
- A \$30 mil investment (initial investment) to remove algae was discussed, but group decided that money is better invested in wetland restoration. Algae removal is an area for further research. Pilot scale project?

Treatment Opportunities in Area #3

Keno Reservoir

- \$30 million- alum micro floc treatment discussed as water flows into Keno Reservoir (Link River). Or pilot project scale?
- Pilot project to examine feasibility of algae removal in Keno Reservoir.
- Oxygenation in Keno Reservoir: possible short term solution, but probably not feasible as a long term solution.

Lost River System

- Improve effluent/ return flows through wetland treatment. Water from agricultural areas currently flowing into Keno Reach diverted to wildlife refuge. Feasibility study? May be infeasible due to Oregon water laws.
- Treatment wetlands—salinity issues.
- Discussed the purchase of land/water rights along Straights Drain for potential treatment sites.
- Net 20 year costs (summary):
- 2000 ac in Sprague for riparian rest. (\$40 mil)
- 5000 ac berm wetlands (\$250 mil)
- 10,000 ac wetlands built on hydric soils (\$100 mil)
- oxygenation below lake (\$30 mil)
- Add an additional _____ for pilot testing on harvesting, biomass removal,
- 5000 acres of juniper removal (\$2 mil)
- Reserve funds for water rights along Lost River system (\$10 mil)

RESC	OURCE ALLOCATION PLAN	Acres	Funding
Reserve fund to buy w	vater rights		\$10,000,000
BMPs - improved nutr	rient management		\$5,000,000
Williamson River	No action		\$0
Wood River	Wetland Restoration	1600	\$24,000,000
Sprague River	Reconnect Springs		\$2,000,000
	Restore Natural Channel		\$5,000,000
	Riparian Wetlands	500	\$5,000,000
	Wetland Restoration	1500	\$18,000,000
	Remove Juniper	8000	\$2,000,000
Upper Klamath Lake	Wetland Restoration	10000	\$140,000,000
	Berm-ed Wetland Creation	5000	\$250,000,000
	Research - Algal Harvesting		\$1,000,000
Keno Reach	Oxygenation (w/o alum treatment)		\$30,000,000
	Wetland Restoration	500	\$7,000,000
	Research pilot - alum treatment		\$500,000
	Research pilot - biomass removal		\$500,000
			\$500,000,000

- A design process that identifies goals, and actions to achieve them, first might be a better approach. (More focused approach)
- An approach that uses pilot projects and adaptive management in the first years is likely to have benefits for the long term effort.
- Public outreach and buy-in will be important for the success of any project.
- River restoration (riparian, wetlands, and nutrient reductions) on Upper Klamath Lake tribs, primarily the Sprague, should be a component of any strategy.
- Long term solution depends on success of efforts to control loads in Upper Klamath Lake tribs.
- Data gap: Can A canal fish screens be designed to allow BGA cells to pass, but not fish?
- A major uncertainty is how long will it take for phosphorous concentrations to come to an equilibrium following reductions of phosphorous inputs from upstream.
- Gene: injection of alum and oxygen at link river, and perhaps at another site downstream, would be effective downstream of Upper Klamath Lake, but would require injections every year. Major cultural concerns would need to be addressed.
- Gene: the amount of internal phosphorous loading to Upper Klamath Lake may be attributed to algae die-off from the previous year.
- A watershed restoration plan, and model, that organizes all the efforts is missing but necessary.
- Develop a watershed plan that develops hypotheses for phosphorous removal strategies, and provides a framework to assess effectiveness of strategies for adaptive management.
- The concentration of phosphorous at Link River is the metric to track success of efforts upstream.
- Deas: Getting Lake Euwana to act as an aerobic system (24 miles of process) would solve a lot of the habitat issues (and others).
- Use Wood River as a demonstration of how upstream improvements can be implemented and effective, and implement similar projects on the Sprague. Implement oxygenation and algae removal (or other appropriate measures) at link river dam to affect improvements downstream of the dam.
- General strategy: Control nutrient loads upstream for long-term through wetland and riparian restoration, remove algae at Link Dam to address short-term, and research in-lake phosphorous dynamics and alum injection at Link River to evaluate other opportunities.
- Potential wetland acreage: 3200 wood, 24000-31000 Williamson, 43000 Sprague.

										Pr	ogr	am `	Year	-					-		
			_		_		_	_									. –				Est. Cost
Design/ Planning Component	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	(ŞM)
BMP Imp.																					50
Effect. Monit. & Assess.																					20
Planning																					
Develop a Watershed Plan	p a Watershed Plan												10								
BOD control at Link River																					
Link River algae removal/oxygenation																					
design																					2
Link River algae removal/oxygenation																					
construction																					20
Link River algae removal																					25
Link RiverOxygenation																					10
External P input control																					
Wetland restoration in upper basins																					150
Pilot projects																					15
Landowner incentives																					45
Outreach/Research																					
UKL Phosphorous dynamics																					15
Algae removal pilot on West side of UKL																					10
Alum injection outreach																					10
Program Total																					382
Overhead, unanticipated costs																					565.36

• Not using TMDL load allocations for this exercise.

Individual Group Member Combo of Technologies

- Straits stream, riverine and the Sprague (riparian corridor improvements/reveg/hydromodification), Wood River Wetland (not breaching the levee).
- Wetlands, Floodplain (be aware of spatial/temporal scales might be good long-term cost option)
- Wetland restoration (important long-term option to get out of managed area), technology provides short term options and can work in specific places, algae removal fixed location over barges, Straits Drain (good target for treatment wetland)
- Fixed structure at dam outlet --> biofuels and soil amendment which can lead to positive public acceptance
- Leave some areas alone. Look to established federal lands for functional wetlands. Supporting restoration on the upper lake. Recirculation of Klamath straits discharge above the drain in wildlife refuge.
- Wetland (provide good long-term option). Not alum dosing in the lake.
- Start at the headwaters. Sprague restoration is an important component, Lake fringe wetlands, access of wetlands for juvenile suckers and recruitment is important, need short-term options for suckers while wetlands get established over 20 years.
- Incentive companies to remove algae.
- Removal of algae in Keno Straits/Link River with a fixed structure. Phosphorous credits/offsets through algae removal after proof of project.
- Start at the headwaters (hydromod in the upper tributaries). Possible pilot dredging and alum to test short-term options.
- EPA's Walking Wetlands expansion, Rotational Grazing, irrigation efficiency grants (conserve water instream), and improving farming techniques.

Combination of Technologies

Focus on long-term restoration starting at headwaters and moving to Upper Klamath Lake using passive restoration (for cost saving with conservation easements).

- Riverine/Riparian Restoration
 - o Use of conservation easements
 - Sprague
 - Williamson and willing landowners
- Wetland restoration
 - North side of Agency Lake and \$4.5M for acquisition.
- Treatment Wetland
 - o Straits Drain (preferred in the existing USFW Wildlife Refuge after feasibility study)
 - o Lake Ewauna
- Diffuse Return Flow Treatment
 - o Bioswales
- EPA's Walking Wetlands expansion, Rotational Grazing, irrigation efficiency grants (conserve water instream), and improving farming techniques.

Short-term measures for target treatment

Algal Filtration

• Pinch-point land facility at Link Dam - start with a pilot test to explore commodity of bi-products and potential phosphorus credits/offsets.

										Pro	gra	۲ m	/ear	-			-				
Design/																					Est.
Planning																					Cost
Component	1	2	з	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	(\$M)
BMP Imp.																					50
Effect. Monit. &																					
Assess.																					20
Link River Algae																					
Harvest - Pilot &																					
Implementatio																					FO
n				-																	50
Humate for AFA																					
Control - Pilot																					0.5
Feasibility																					
Treatment at																					
Straits Drain																					9
Riverine/Ripari																					
an Restoration																					100
Diffuse Return																					25
Flow Ireatment																					25
Vvater																					25
Wetland																					20
Restoration/Ha																					
bitat																					140.5
Treatment																					
Wetland (2)																					150
AM Decision																					
Points																					
Program Total																					570

• Offsite Alum Treatment and pilot test.

										Pro	ogra	۱m ۱	(eai	r							Est. %
Measurable																					Red.
WQ Imprv.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	t=20
TN																					
ТР																					
D.O.																					
рН																					
Turbidity/TSS																					
Chl-a																					
Algal toxins																					
Other																					

Key Ideas:

- Recognize importance of addressing the source of the problems/prevention as opposed to use of largescale technologies. Potential to devote more \$50 million allocated for BMPs. \$50 million for BMPs should be targeted at removal of nitrogen; the removal of this should be verified with monitoring, etc.
- Need to look at addressing more than nutrients, recognizing upcoming TMDLs for other constituents such as pesticides, arsenic, etc. Recognize additional benefits such as habitat and wildlife.
- Importance of looking for opportunities to find additional revenues or benefits from technologies being used. Use grants or potential to sell algae to supplement the \$500M allocated for this project.
- Need clear goals/vision. May not want to tie to TMDLs. Recognize that the TMDLs in Oregon are contentious and under revision at this point. Likely to be changed again with more litigation.
- Focus on more sustainable alternatives that have lower operations and maintenance costs. Our design focuses on the use of wetlands as opposed to dredging, oxygenation, or the addition of chemicals to the system. Recognize that other technologies could be brought into the mix through the adaptive management process if endangered species or other needs arise and need to be addressed in short term/more immediately.

Project Design:

- Wetlands:
 - Use a combination of all three types of wetlands (diffuse/restoration/treatment) with focus on removal of phosphorus.
 - Recognize the importance of locations in ability to maximum water quality benefits.
 - Objective to restore 20 percent of natural function in each sub-basin.
 - Importance of focusing money in Upper Basin where benefits may be more readily achieved early in the process (less controversy than some other areas and may not require water right revisions)
 - Other key areas for wetlands include:
 - Around Upper Klamath Lake; and
 - Klamath Strait's Drain (treatment wetland before water re-enters Klamath River; also potential for use of a carbon filter).
 - o \$50 million for diffuse wetlands over 20 years, with \$2.5 million/year.
 - o \$202 million for a combination of restoration and treatment wetlands for Years 1-5
 - Identify and purchase three key properties in each basin and conversion to wetland; and
 - Associated studies.

• Algal Filtration/Removal:

- Pilot study to screen the outlet of Upper Klamath Lake (at Link River Dam) and deliver algae to A Canal or spoil site (allow for dewatering and subsequent dispose or re-use of material – possible source of funding).
 - \$3 million in Year 1;
 - \$7-10 million for ongoing operations and maintenance; and
 - \$5-10 million to implement in Years 3-5 or sooner if designed and pilot shows benefits for larger scale.

• Adaptive Management:

- Annual review of data and status of system. Includes report. Allows opportunity for changes to policy/plan if necessary (e.g., fish kill, etc.).
- Not less than every five years, overall (comprehensive) review of policy, funding, assessment of meeting goals, funding allocations, etc.
- Multi-stakeholder process that is not run by any one agency. Desire to ensure continuity. Promote transparency (similar to KBMP model).
- \$1 million/year for database and infrastructure that supports this process. Data integration into CEDEN/SWAMP.
- \$208 million remaining at Year 5 (first adaptive management meeting). Will determine future uses of funding at this point in time with considerations for O&M over future 15 years.

Summary of Money:

Year	Amount	Purpose
1-5	\$202M	Wetlands (Treatment &
		Restoration, including land
		acquisition)
1-5	\$20 M	Algal Filtration/Removal
1-20	\$50 M (\$2.5 M/year)	Diffuse Wetlands
1-20	\$20 M (\$1M/year)	Adaptive Management
		(Stakeholder, Infrastructure,
		Data)
*Leaves \$208 million. Use of rema	aining funds will be determined thro	ugh adaptive management
process. Also need to recognize th	ne potential for additional revenue f	rom other sources (e.g., grants,
sale of algae, etc.).		

Important Group Comments Regarding Design:

The group emphasized the importance of adaptive management to evaluate the impact of the different treatment options. The final design and budget recognizes that we need immediate action in order to prevent the loss of the native fish populations within the basin.

Overall Comments:

- Importance of adaptive management recognition of potential failures
- Holistic approach absolutely necessary no one technology or approach will solve the problem
- Value of pilot projects above and beyond efficacy
 - o Particularly diffuse wetlands
 - o Ability to use pilot projects for education of the public
 - Education as part of the solution
- Riparian restoration
- Ability and room for coordination of different projects
 - o Riparian corridor necessary
 - o Department of Agriculture is looking into compliance solution
- Stream morphology
 - o Stream network has been significantly altered
 - o Water table has been lowered as part of irrigation and stream channelization
 - o Wetland creation may be easier with the use of beaver dams
 - Concern beaver considered nuisance species
 - Concern migratory fish
- Wetlands
 - o Lakeshore wetlands have been altered too extensively to use passive wetland restoration
- Overall basin
 - Treat tributaries first to get the most cost effective solution
 - AFA bloom spurs the *Microcystis* bloom
 - P not evenly distributed throughout Upper Klamath Lake
- Treatment Options/Discussion
 - o **Dredging**
 - Concern: prohibitive costs
 - Concern: sediment disposal
 - Could the dredged sediments be used in wetland restoration
 - Constructed wetland
 - Alum application to limit P with wetland creation
 - o Adaptive management
 - o Limited activities because of the scale of the issue and cost limitations
 - o Can we harvest at a rate that can compete with the AFA blooms
 - o Pilots needed for wetlands/riparian restoration? Knowledge exists, may not be necessary
 - o Concentrate on downstream benefit
 - o Internal P cycling within Upper Klamath Lake not a single source within Upper Klamath Lake
 - Major hot spots may benefit from dredging
 - Need data regarding mass balance model
 - P sediment hotspot map the values are relative with the lake
 - Legacy P in the sediment of Upper Klamath Lake?
 - If yes: alum may be a potential solution

- If no (the P flushes out with the blooms): alum treatment may not be effective
- o Keno
 - Removal of algal biomass prior to entering Keno
 - Limited resiliency within the lake
- o Fish protection
 - Upper basin morphology is too altered for endangered fish species
 - Easements for riparian areas
 - Reconnect floodplain incised banks
 - Time may not be an option in order to protect the fisheries
 - Perhaps need a major action in order to protect the endangered fish
 - Short term actions necessary to protect fisheries
 - When are the effects of long term projects going to be realized
- o Floodplain reconnection
 - Channel reconstruction
 - Not a BMP -->
- o Unknown P reduction
 - Currently there is no P goal, so it is difficult to evaluate potential actions for efficacy
 - In-lake mesocosom to evaluate the water column P concentration necessary to prohibit AFA bloom
- o Costs Estimates
 - Not helpful in isolation
 - Dredging costs should be higher than workshop spreadsheets
 - Actual channel reconstruction:
 - Lower Wood River: \$1 million/mile
 - Sprague: \$250,000/mile
 - Riparian restoration
 - \$200-\$250/foot
- o P & N Benefits
 - Riparian restoration calculations currently unknown but available
- o Land Acquisition
 - Removal of tax base concern for local government
 - Benefit of having possession of the land for management
 - Concern of taking agricultural land out of production
 - Potential of wetland with biomass that could be haved \rightarrow still working land
- Managed wetlands around Upper Klamath Lake for the biomass haying
 - Certain managed wetlands around Upper Klamath Lake will temporarily drained 2-3 times during the growing season in order to harvest wetland plant species which can be used for hay
 - Assumptions are that the area will have to be drained for a short time period: 1-2 weeks, to allow for the haying. During this time, it is assumed that the land will not dry out sufficiently to cause additional nutrient loading
 - The wetland species that is able to tolerate the inundation and can be harvested for hay will require additional investigation

Design/ Planning							Ċ	÷	F	Progra	m Yea	ir									Est.	
Component	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Cost	Comments
BMP Imp.																					50	
Effect. Monit. & Assess.																					20	
UKL P Modeling																					0.5	Additional P modeling for UKL is necessary to inform the specifics of many other actions
Floodplain Restoration																					90	Priority is the South Fork Sprague. Other systems have potential as well, for a total of 90 miles of stream restoration
Land Acquisition around UKL																					50	Purchase of an estimated 10,000ac around UKL
Managed Wetlands around UKL	Р	Р	Р	Р	Р																1	The initial 5 years will involve the implementation of a pilot program to determine feasibility and efficacy. The management option involved the haying of wetland biomass. Details in the Notes section.
Managed Soil Accretion Wetlands	Ρ	Ρ	Р	Р	Р																1	The initial 5 years will involve the implementation of a pilot program to determine feasibility and efficacy. The management strategy involves the accretion of soil within these wetlands to sequester organic mater and nutrients.
Habitat Wetlands	Р	Р	Р	Р	Р																1	The initial 5 years will involve the implementation of a pilot program to determine feasibility and efficacy. Habitat restoration with very little management necessary
UKL & Agency Alum Treatment	Р					Adpt Mgt D					Adpt Mgt D										241	Initial Alum treatment, then evaluate the impact of the treatment to determine whether an additional application is necessary or if Keno would benefit from an Alum application. Pilot project to demonstrate efficacy.
Keno Alum Treatment						Adpt Mgt D	?														68	After the initial UKL alum application the management group will determine whether a Keno alum treatment is necessary. If not, then the management group can decide the best place to spend the additional funds.
Managed/Habitat Wetlands around Keno - TBD after adaptive mngt decision						Adpt Mgt D															40	After the initial work, determine the necessary wetland actions that are needed to help treat Keno.
Public Outreach																					8	Public outreach to support restoration efforts and encourage the local community to participate in the restoration of the Klamath Basin.
Program Total			-							-							-			-	570	
	P D	Implemer Pilot proj Adaptive	ntation an ect stage Managem	d maintena ent Decisio	ance on Point																	

Objectives

- KSD/FERC- getting salmonids into upper basin/ beneficial uses
- Not necessarily the attainment of TMDL
- Accountability by milestones/measurable progress/goals
- Restoring function is key
- Nutrient reduction in the Upper Klamath Lake, CNP control d/s
- Expand program to 50+ yrs, spend \$ in first 20 yrs
- New \$, other ongoing processes continue (TMDL, DMA's, BMP's, restoration)

Technologies

- Wetland Restoration
- Treatment Wetlands
- Diffuse (decentralized) treatment systems
- Gravity fed raceways downstream of Link Dam, adjacent to Keno to remove algae and nutrients (CNP)
- Sediment dredging
- Algal filtration

Land Acquisition for Wetland Technologies

- 15,000 acres = \$60MM (at an average price of \$4000/acre; combination of lakefront/riverfront and pasture land); \$40MM to convert to some combination of wetland treatment/natural wetlands and O/M; \$100MM TOTAL
- U/s of lake, diffuse wetlands are 3% of the 150k acres, 4,500ac. Purchase Cost =\$3,000/ac for a total purchase price of \$13.5MM; construction costs @ \$10,000/acre= construction total cost \$45MM; \$58.5MM TOTAL
- Assuming willing landowner

Gravity Fed Raceways: downstream of Link Dam, adjacent to Keno to remove algae and nutrients (CNP)

- Treating 25% of flow and total load, 129M gallons of treated water/daily =60 acres needed (\$5,000/acre, \$300k total)
- Water rights issue? Minimal consumptive loss
- Potential adverse issue with *Microcystis* in late summer, pilot study needed
- Potential economic benefit from algal harvesting
- 32 MT N/yr removed, 3200MT of wet biomass/yr
- Cost of OM, Construction, Pilot Study (\$10M) (50yrs)= \$65M
- Timeframe, immediately implemented

Pilot Projects in Upper Klamath Lake

- Algal removal via barges =\$37M using 10 barges/yr, 9MM kg/yr (100 days/year)
 - Explore feasibility of dredging P hotspots, and use dredged material to offset subsidence
 - Target Goose Bay (10,000 acres at 10cm depth=\$53MM Total cost for dredging)

Additional Approaches

- \$20M for watershed restoration/watershed health in Sprague
- KSD

٠

- Tule Lake
- Sprague River Riparian wetlands

- Water conservation and efficiency in irrigation project
- Additional monitoring

Cost Summary

Est. Cost	Design/Planning Component
100MM	Upper Klamath Lake wetland restoration
65MM	Algal removal in Keno (raceways)
60MM	Upstream of Upper Klamath Lake diffuse (decentralized) treatment systems
100MM	Upper Klamath Lake treatment including feasibility studies and research (hotspots and algal biomass removal)
20MM	Sprague River Restoration
Total \$300MM	

Lingering Questions/Needs

- Need more information about mass balance of nutrients (P) in the various portions of the system. This is not part of our budget, we are assuming that this information gap is being filled elsewhere (we are simply identifying it here).
- Need modeling of algal bloom dynamics so that we know the role of flow, temperature, nutrients, wind circulation, etc. and their effects on Nutrient dynamics.
- Need modeling conducted that describes sucker survival and recruitment in the Lake. What will it take for the suckers to successfully recruit juveniles?
- Models of Keno and Upper Klamath Lake should be applied to get an idea of how much Nutrient removal we need to get a response in the system.
- There will be a need to outreach and education about the need for nutrient decreases, large scale watershed technologies to decrease nutrient loads, etc.
- Need to better understand the costs of dredging, and the benthic/fish community to understand if a pilot project would be advisable.
- Questions about alum treatments at pH of 9 and higher.

Group System Design

- All agree that one component of our project will be restoring fringe wetlands around Upper Klamath Lake (wetland restoration). Land acquisition the main cost. 4000 acres (\$45 million...this includes an initial investigation where restoration has already taken place historically and the results of restoration efforts)
- All agree to spend BMP (\$50 million) & Monitoring monies over the entire 20 years (\$20 million).
- Education/Outreach (\$5 million).
- Considered \$ for landowner incentives
- All agree that we need pilot projects involving the creation of diffuse wetlands and have incentives for installation in key locations (pilot for 3 years, 5-10 projects \$1.5 million). The pilot projects can tell us how much nutrient removal will occur from these diffuse wetlands. South Fork Sprague is the recommended implementation location.
- Full diffuse wetland treatment system development in the basin after/if pilot program proves successful (\$30 million, this anticipates that there will be other funding sources for the creation of diffuse wetlands).
- Treatment wetland pilot projects to help determine additional treatment wetland sizing and placement in the system (three (3) 50 acre wetlands...ideas for pilot:
 - o Williamson
 - o Wood
 - Keno: Rat Club [upstream of straits drain] and Miller Island Wildlife Area.
- Full construction of 4000 acres of treatment wetlands (around Keno, Wood/Williamson, and Lower Klamath Lake)
- Algae removal \$20 million (5000 kg/yr of TP removal) in the Eagle Ridge Trench

- Need to consider some type of biomass removal at Link (group didn't have time to discuss in detail)
- Analysis and engineering analysis of aeration of Keno Reservoir (no cost estimates yet).
- Alum application:
 - If the following questions are addressed then proceed with pilot project for alum: 1) high pH (9+) does not result in toxicity, 2) benthic community is studied and low effects determined, 3) benthic fish (suckers) will not be adversely affected
 - If the above questions are answered do a pilot projects at location TBD in Upper Klamath Lake, with further implementation TBD
- Dredging pilot project (suction dredging our preference). Suggest putting sediment into subsidence areas. South end of lake suggested (Cove Point?).
 - Idea: dredge and then apply alum to the slurry to make sure it doesn't re-mobilize back into the lake.
- Biochar pilot project.

How to approach the problem:

- Interim measures evolving to longer term solutions
- How can we make greater strides over a shorter term to protect beneficial uses?
- Fix external load first

How many tons do we need to sequester (load)? Long term TMDL as measured at Stateline:

3M lbs/yr NTarget: 1.1M lbs/yr717K lbs/yr PTarget: 90Klbs/yr PReduction 675K lbs/yr

	Tribs to Upper Klamath Lake	Upper Klamath Lake	Keno
Short term	Diffuse wetland treatment-		
	beyond the scope of a couple		
	of pilot projects		
	Wetland restoration		
Long Term			

Priorities (tentative):

- Klamath Straights Drain (KSD) water can be run through wetlands to remove P; may be able to run through Klamath River Lower National Wildlife Refuge
- BioChar mixed with silage (but what to do with it?) could be applied to KSD or Seven Mile Canal as a pilot study; can make it out of algal biomass; or use alum as soil amendment (PAM)
- HL or need to take additional measures in Keno Reservoir to achieve WQ goals in nearer future for the 20 year program until the 50-year reduction of external loads is fully realized. Accelerate diffuse treatment wetlands.

Ideas around the room:

- Need better handle on numbers and cycling; not paralysis by analysis; i.e., in Wood River, can make
 some strides with diffuse wetland treatment where can get good bang for buck. Sprague River
 watershed is also important in case salmonid habitat can be utilized; Upper Klamath Lake opportunities
 should be pursued since there is a good probability of success (low risk with good results); serious short
 term problems (consider alum treatment in Keno Reservoir as there may be salmon in this reach within
 7 yrs so that salmon don't need to be trucked to spawning habitat); along Keno Reservoir, need to put
 in treatment wetlands that could evolve to restored wetlands; treatment wetlands for agricultural
 returns; algae removal may not be effective/nor dredging
- Need to look at LIDAR coverage in the Upper Basin to identify best locations for diffuse treatment wetlands. Wood River has better opportunities than Sprague River; best hope in riparian restoration; Sprague River sediment budget high in certain stretch and needs reconstruction; need to deal with Sprague levees since they prevent sediment from settling in floodplain; alum treatment could be done in Upper Klamath Lake that could give positive results in Keno (93-130M\$) two large scale alum treatments in the lake; why not use LKL wildlife preserve for treatment but would need plumbing changes; divert from UK to reserve to get benefit of existing wetland treatment; without alum might need dredging and biomass removal. Biomass removal doesn't address internal loading

- Alum treatment could be a powerful short term fix; Upper Klamath Lake or Keno? Maybe both? Then longer term treatments. Concerned about net long term nutrient reduction with wetlands. Harvest for silage to increase nutrient reductions. Is there a wetland crop? Dredged material: can it be fed back into system to build up subsidence areas?
- Restore habitat for nutrient reduction and to create habitat; P sequestration but concerned about the pH with creating chemical toxicity from the aluminum; or can we use calcium as an alternative (or lanthanum); would need a lot of design work and a pilot study; if you don't treat the lake then you aren't dealing with the fish issue in the lake. Trap and haul as objectionable, need a shorter term solution with oxygenation when the fish need to pass. Stop draining inundated wetlands; leave it flooded once it is flooded (walking wetlands may mobilize nutrients). Dredging too expensive; removing algal biomass not realistic. Dosing of the sediment to deal with internal load; might have to do it every 10 years along with tons of restoration
- Concerns with alum use and possibility for floc impacting aquatic life; holistic enhancements
- External loading dealt with in 50 year plan; positive approach to utilize existing wetland; and create habitat but want to get immediate benefits as well; algal filtration and biomass removal at dams or canals/pinch-points; aeration oxygenation to address temporary impairments so trap and haul doesn't have to go on for years after removing dams; need to address internal load of the lake. Pilot studies in limited areas or hot spots; wetlands around Upper Klamath Lake perimeter where opportunity exists.
- Problems with legacy load and hydraulic modifications; restoration needs to be a major component but unfortunately may be politically infeasible due to constraints with changing land use; agricultural drainage collected into treatment wetlands/diffuse treatment; big question with BMPs: do they work? Needs to have monitoring (needs greater investment and try to educate and outreach to community)
- Focus of restoring ecosystem function on a larger scale rather than little diffuse systems. How is
 hydroperiod affecting function of wetlands that are being restored (hasn't been addressed so can't show
 if restoring them is a benefit to improving water quality). Two stage ditches with an internal terrace
 between the system that traps sediment and denitrifies; studies done so far show lag in P retention so
 will need some pilot studies for alum or other short term methods
- Ag expertise not represented here so missing some of the needed input; sodium aluminate can be enemy to irrigated agricultural, so sodium budget needs to be considered (this could be changed to K); 1-2 acre wetlands may not work over long term and may not be maintained; targeted design wetlands with reality check of getting acreage in the right places to cut external load. Algal filtration viewed with skepticism. Reservations about wetland restoration vs. treatment: not a great track record with restoration but better removal with treatment wetlands based on historical; targeted wetlands downstream of Link could give some improvement but probably can't get the needed acreage.

Pilot Projects:

- A Upper watershed strategies
 - o Treatment wetlands needs 4–5 yrs to see benefits
 - Wood River watershed is high priority and amenable to treatment wetland approach
 - o Dispersed wetlands treatment siting and design is needed
- B Restored wetlands on prioritized basis = 1-1.5 g P/m2/yr = 10.5 lb/acre/yr = 10 lbs/acre/yr;
- C Intervention: short term and long term needed
- D Treatment: alum and/or biochar

Design/ Planning									F	Progra	m Yea	ır									Est.
Component	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Cost
BMP Imp.																					50
Effect. Monit. & Assess.																					20
UKL Pilot and Intervention 1					Х																130
UKL Intervention 2 or Keno																					
fix if alum # 1 fails															х						100
UKL Upper Watershed																					
rehabilitation	Plan	Plan																			80
UKL marginal wetlands	plan	plan	plan	plan																	50
Wood R treat wetlands																					30
Wood R wetland O/M																					1.5
Straits Drain wetland																					
planning	plan	plan	plan	plan																	1
Straight Drain alum																					
injection/treatment	plan	plan																			
AM Decision Point 1:																					
Straights drain																					
implementation									х												
Straits Drain implementation																					82
Contingency Fund																					25
Program Total																					570
X= start to see water quality benef	fit		1			1		1				1	1					1	1		

- 1) Upper Watershed Strategies (diffuse & riparian corridor)
- \$80 million (capital & O&M)
- 2) Restore historic wetlands \$50 million
- 3) Intervention (p sequestration)
- \$130 million pilot + Treatment #1
- \$100 million Treatment 2 (or Keno Fix)

Working Assumptions

- ✓ Models to refine nutrient targets
- Improve walking wetland e.g., Don't drain fill
- ✓ Ag water conservation
- ✓ Targeted BMPs (?)
- Biochar (wetlands / soil amendment ?)
 - 4) Treatment wetland KSD pilot \$90 million
 - 5) Keno intervention (habitable for fish passage) alum / oxygenation (?)

Contingency fund \$50 million

Concept: focus most money on what we know will work but save some money for pilot studies where there is uncertainty

Project 1: Treat Tailwater

• Pilot Project to establish Diffuse Treatment Systems with willing landowners (use small wetland to treat agricultural tailwater on farm-by-farm basis). May inform development of BMPs Manual by year 4; total cost over 20 years: \$500,000 x 5 = \$2,500,000

Project 2: Algal Filtration

- Feasibility study and development of P transport model how much algae do we need to remove? Are
 there markets for the harvested material? Need economic study. Results of studies by year 2. Cost for
 studies: \$500,000 Assume studies lead to clear plan to build off channel filtration plant that costs \$30
 million to build by end of year 6 with annual O and M of \$3 million; implement years 6-20. \$84 million
 total. Costs possibly offset by marketing material as fertilizer.
- See decrease in total and P and magnitude of blooms by year: 15.

Project 3: Alum Feasibility – \$500,000; complete in year one.

Project 4: Treatment and Restored Wetlands

- Objective i. Treatment Wetlands on Klamath Refuge (assumes KBRA implement restores refuge wetlands 48-64 taf water goes there); Develop program that starts treatment wetland with long term goal of achieving a restored wetland. Would absolutely not affect leased lands consistent with KBRA.
- Objective ii. Combine our efforts with the Water Rights Retirement Program in the KBRA (designed to retire use of 30 taf) to identify lands upstream of Upper Klamath Lake to convert to treatment wetlands. Caledonia Marsh, Barnes Ranch, Agency Ranch, key areas.
- Objective iii. Klamath Straits Drain develop treatment wetlands
- Objective iv. Lake Ewauna develop treatment wetlands

Timeline

Year 1 – feasibility studies and design project: \$500,000 per each = \$2,000,000 Years 2 to 6 – permitting, land acquisition = \$150,000,000 Years 7 to 20 – implementation = \$173,000,000

Invest \$100,000,000 into a trust account for management into perpetuity. Involve Warren Buffet.

Effectiveness Monitoring

What is the focus of our project?

Treatment Options

3 Wetlands	5, 5,7,6,8,6,7,7,5,7 = 62
1 Treatment wetlands	7,7,7,5,5,10,9,5,8,10 = 73
4 Diffuse treatment systems	3,7,3,6,2,0,7,5,7,8 = 48
2 Algal filtration	4,6,7,8,8,10,5,5,6 (PILOT), 5 (pilot) = 64
6 Sediment dredging	1,3,0,2 ,0,0,0,0,1,2 = 9
5 sequestration of P	7,6,3,2,1,(land) 5,5,8, (land) 5, 5 = 47

IDEA: P trading and capping. Buy P by the pound.

Day 3 – Design Charrette Key Themes

The following key themes were developed on the morning of Day 3 by the Project Contract Team lead, Maia Signer. The Final Workshop Report will present a synthesis of the workshop, so the below key themes represent only a first cut at the key themes.

- General passion for WQ and habitat improvements in the basin
- Creative thinking is needed
- Multiple technologies/approaches no one fix
- We are in this for the long haul 20 years isn't enough, perhaps a 50-year time horizon
- Amount of funding needed
 - Easy to spend the first \$100-300M
 - Given information gaps, harder to justify \$500M
 - More important to get it right then spend a lot of money trying big installations
 - Need targets not necessarily TMDLs, but need a goal
- Short-term and long-term measures needed
 - Short-term suggestions
 - Treat symptoms now where unacceptable
 - Keno Reservoir oxygenation (w/alum or w/out alum)
 - Get pilot studies going
 - Algal biomass removal
 - Diffuse wetlands
 - Targeted dredging
 - Alum application
 - Long-term suggestions
 - Imperative to consider climate change
 - Treat source rather than symptoms
 - Low energy use systems preferred (i.e., wetlands)
- Locations
 - Wood & Sprague River watersheds
 - Williamson River lower priority
 - Keno Reach
 - KSD
 - Lost River watershed
- Large-scale nutrient removal technologies/approaches
 - Need more than \$50M for BMPs
 - Wetland restoration
 - All types of wetlands included (habitat-focused, managed, treatment, diffuse source), distinction not important
 - Mainly around Upper Klamath Lake and in Keno Reach (including KSD)
 - Mixed application in tributaries to Upper Klamath Lake
 - Alum
 - Sensitivities around alum application
 - Pilot studies/further research on how it will work in Upper Klamath Lake/Keno
 - Concern about high pH
 - Public outreach
 - Dredging
 - Targeted areas in Upper Klamath Lake

- Pilot studies needed
- Want to re-use that material in the basin if possible, so need to study implications for P-release
- More scientific studies needed in the following areas:
 - Upper Klamath Lake P-dynamics
 - How much algae needs to be removed to have an affect on Keno D.O. and internal P recycling in Upper Klamath Lake
- Riparian restoration is critical to restoring function

Other ideas:

- Other TMDLs beyond nutrients
- Need modeling conducted that describes sucker survival and recruitment in the Lake. What will it take for the suckers to successfully recruit juveniles?
- Reconnect springs
- Juniper removal
- Biochar applications possible
- Energy costs are rising, be mindful of consequences
- Invest \$\$\$\$ into a trust account for management into perpetuity. Find wealthy benefactors to fund this
 ☺

Day 3 – Expert Panel Discussion

Format: Expert Panel members each had 5 minutes to respond to the synthesis of Day 2 Key Themes from the Design Charrettes. During the Expert Panel response period, other workshop participants wrote questions on small sheets of paper, which were then collected and sorted into topic areas. Twenty-six questions were submitted, falling into the following topic areas, which generally aligned with the expertise of one of the Expert Panel members:

- Agriculture Dave Ferguson
- Scientific Understanding/Nutrients/Algal Dynamics Stewart Rounds
- Hydrology/Fisheries/Wetland Management around Upper Klamath Lake-Larry Dunsmoor
- Broad Approach Themes–John Day

Three of the questions were repetitious, so 23 questions were read to the Expert Panel members.

Questions/Brief Summary of Responses:

1. Where does the panel believe we stand as far as data/science in the basin? Do we have (1) enough data/science to move to an implementation program, (2) just enough data to start implementing but need more to implement full scale, or (3) not have enough to do anything yet?

Stewart: We need to start now to address critical water quality problems and learn as we go, i.e., adaptive management.

John: Start now and remove distinction between wetland technologies.

Dave: There are tried and true measures in place (i.e., BMPs), we should move forward with BMPs; for big removal projects, we need more information before wholesale implementation.

Larry: Would instead pose a question in response - is our understanding of fundamental processes being strategically brought to bear across landscape to problem solve? I think the answer is "no" and we need to do this.

2. There has been a lot of attention paid to algal biomass filtration. What is your view of the role/importance of dissolved nutrients?

Stewart: Upper Klamath Lake is a coupled system and dissolved nutrients are important as well as particulate/total nutrients.

3. Do you see any fatal flaws in any proposed activity?

John: proposing a program that becomes unaffordable due to inevitably increasing energy costs. **Stewart:** any proposed activity has flaws and need to be considered for tweaking (i.e., dredging Keno Reach not a good idea).

Larry: noticed a lot of discussion of half-way measures discussed at the workshop, these don't go far enough and doing so may divert funds from a better overall solution.

Dave: fatal flaws may be in developing projects without consulting landowners. Suggest bringing conceptual plans to landowners early in the process. To keep the momentum going, we need conceptual plans in next 1-2 years. Then conduct landowner outreach prior to installation of projects.

4. Notwithstanding funding issues what is the likelihood of a timeline for achieving >50%BMPs (e.g. riparian fencing) in places like South Fork Sprague?

Dave: Not withstanding funding issues, we've seen similar projects achieved in 20 yrs.

- Don't the rights of private property ownership come with a responsibility to protect public trust?
 Dave: the answer to this question depends on your political views.
 Larry: this is an ideological question and regardless of the answer, I'm most interested in practical solutions.
- 6. Can you get cooperation of landowners if there is no specter of enforcement of environmental laws? Dave: Response "yes", limited amount of regulation is good push but the market drives behavior in many cases (for example, organic hay production near Upper Klamath Lake has been largely market driven).
- Will structured engineering assistance focus the behavior of professional agriculture practitioners? Dave: that is one of the roles of NRCS, however, it is up to willing landowners to accept new practices.
- 8. What are the three knowledge gaps we need to address in the Klamath Basin? John: we need to look at the sustainability of approaches given that energy costs will no longer be low.

Stewart: the physiology of AFA is still not well understood; additional studies may provide clues about controls on bloom dynamics.

9. What are the three actions/activities/projects that need to be done next in the basin?

John: there are several scenarios which I will leave to the local experts, but I emphasize that there are real limitations on resources (funding) and sustainability is key.

Dave: we need to provide a common message throughout the basin regarding management approaches.

Larry: we need to decide what to do about Upper Klamath Lake internal P-loading in the near termwhat can we do to deal with this problem now? There are still knowledge gaps for each of the major intervention techniques. We need to implement the settlement agreements. Stewart: we need to develop a comprehensive basin plan that states our vision for water quality and habitat improvements in the basin.

10. How do the Florida/Chesapeake programs collaborate and coordinate at the basin level and across agencies/organizations?

John: expert workshops such as this and development of a lot of published literature.

11. Although wetland restoration is generally accepted as critically important for habitat and water quality improvements, these kinds of projects take a long time and don't help immediately in emergency WQ/habitat conditions. How can we balance the need for solutions now?

John: again, there are several scenarios for the near-term solutions which I will leave to the local experts, but I emphasize that there are real limitations on resources (funding) and sustainability is key. Wetlands are low energy use and provide habitat benefits as well as water quality improvement.

12. Nancy Simon stated that the dominant composition of the sediment in Upper Klamath Lake was diatom frustules. If so, shouldn't we expect the lake to respond reasonably quickly to reductions in external loads?

Stewart: Agreed that the response time is a critical piece of information.

Nancy: We do not know the response of diatoms, a form of algae, to reductions in external nutrient (phosphorus) loads because a major limiting nutrient for diatoms is silica.

13. Are we as a group over-estimating and over relying on wetlands to reduce loads and impact water quality? What does the science say? Won't they have reduced effectiveness in the future and possibly even become a source of P to the system?

John: Wetlands are proven in this regard. There are many other regions, watersheds where wetlands have been in place for a >20yrs and they are still functioning with respect to P removal.

- 14. Other than mention of the two endangered fish species and the two algal bad actors, there was little discussion of a vision for the target community and ecosystem structure for Upper Klamath Lake. Do we need a more explicit vision? Do we need to think more about the importance of food web interactions? Stewart: more diversity in the algal community should be the target. In other words, replacing the monoculture in Upper Klamath Lake.
- 15. How do we get landowners to embrace restoration?
 Dave: proper incentives and meeting landowners where they are at in life. Also suggest development of conceptual plans that are shown to landowners in the early stages of projects to help them understand and get onboard.
- 16. Is enough known about the target nutrient and nutrient ratios needed to eliminate AFA blooms and avoid triggering MSE blooms? Has enough information been extracted from case studies of shallow lake restoration and switching between alternate stable states?

Stewart: Our goal should be to control AFA and MSE rather than eliminate the blooms. Upper Klamath Lake is a coupled system and we need to understand how the dynamic can change.

- 17. How do we plan for an ecological threshold (cliff) if we don't know where it is? **Stewart:** We need to make incremental progress, use adaptive management.
- 18. Not a new question really an emphasis of earlier question, how much algae needs to be removed to affect subsequent blooms?

Stewart: This is something we can work on, study, I don't have the answer now, but it is an important question.

19. Do we have a good understanding of agricultural water management practices in the area? Larry: Yes. We have good data on hydrology in the basin and we basically understand agricultural practice with respect to water management. There are some gaps in our understanding of shallow groundwater interactions with agriculture.

Dave: Yes we do, but we find that when actually designing irrigation systems or practices related to irrigation, there are often management factors that don't necessarily fall within the norm.

20. Do you feel it is necessary to do a mass balance analysis to discern the area that needs to be restored to wetlands?

Stewart: the magnitude of the response to wetland restoration should be quantitative, so a mass balance could be informative.

- 21. We've lost over 50% of Lost River suckers and as much as 80% of shortnose suckers in Upper Klamath Lake since 2000. To what extent does the threat of extinction for these species drive priority setting in the Klamath Basin restoration? (As compared to e.g., salmon rehabilitation in the upper basin)? Larry: An enormous amount restoration of these species was an important driver of KBRA. We won't be able to recover these species without a multifaceted approach like KBRA.
- 22. Recognizing Dave Ferguson's point about meeting landowners needs and John Day's point that large federal funds won't materialize, how do we generate local support and or funds for restoration that isn't perceived as threatening? KBRA may have had that intent but it felt exclusive and federally driven to many in the basin.

Larry: As Dave said previously, we need to meet landowners where they are at and offer good incentives. KBRA is not a federally driven agreement – it was developed by many people who understand and work with local/regional issues.

23. Shouldn't areas purchased for wetland restoration around Upper Klamath Lake and Agency Lake be used for that purpose instead of water storage to help suppress BGA?

Larry: Yes, ultimately wetlands should be restored rather than used for pumped water storage, but the inherent assumption in this question seems to be that wetlands are the silver bullet for solving Upper Klamath Lake water quality problems related to algal blooms. The benefit of restored wetland areas is that by acquiring properties and changing their management, we stop the cycle of oxidation of nutrients and pump-off/release of these nutrients to the lake. This is the critical long-term process that needs to be fixed to help the lake's water quality.